## STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2004-05)
SUBJECT CODE : MT/MC/VL64

## B. Sc. DEGREE EXAMINATION, APRIL 2007

BRANCH I - MATHEMATICS
SIXTH SEMESTER

## COURSE : MAJOR CORE <br> PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS <br> TIME : 3 HOURS <br> SECTION - A

MAX. MARKS : 100

## ANSWER ALL QUESTIONS :

$(10 \times 2=20)$

1. Define a vector space and give an example.
2. Determine whether the following vectors are linearly dependent or independent.

$$
(1,3,2),(2,1,0),(0,5,4)
$$

3. If S is a subset of a vector space V , show that $\mathrm{L}(\mathrm{S})$ is a subspace of V .
4. If $u \in V, \alpha \in F$. Prove $\|\alpha u\|=|\alpha|\|u\|$.
5. If W is a subspace of a finite dimensional Inner product space, prove that $\left(W^{\perp}\right)^{\perp}=W$
6. Define a linear transformation.
7. Define a singular element of $\mathrm{A}(\mathrm{V})$. Give an example.
8. Find the minimum polynomial of the matrix $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
9. If $T \in A(V)$ is regular, then show that $V T=V$.
10. Find the characteristic roots of $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

## SECTION - B

ANSWER ANY FIVE QUESTIONS :
( $5 \times 8=40$ )
11. If V is a finite-dimensional vector space and if $u_{1}, u_{2}, \ldots, u_{m}$ span V , then show that a subset of $u_{1}, u_{2}, \ldots, u_{m}$ forms a basis of V .
12. If A and B are finite-dimensional subspace of a vector space V then show that $\operatorname{dim}(A+B)=\operatorname{dim}(A)+\operatorname{dim}(B)-\operatorname{dim}(A \cap B)$.
13. If V and W are vector spaces over F then show that $\operatorname{Hom}(\mathrm{V}, \mathrm{W})$ is also a vector space.
14. State and prove Schwarz inequality.
15. If $V$ is finite-dimensional over $F$. Show that for $S, T \in A(V)$.
(i) $\mathrm{r}(\mathrm{ST}) \leq \mathrm{r}(\mathrm{T})$
(ii) $\mathrm{r}(\mathrm{TS}) \leq \mathrm{r}(\mathrm{T})$
16. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ in F are distinct characteristic roots of $T \in A(V)$ and if $v_{1}, v_{2}, \ldots, v_{k}$ are characteristic vectors of $T$ belonging to $\lambda_{1}, \ldots, \lambda_{k}$ respectively prove that $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent over F .
17. If V is n -dimensional over F and if $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ has all its characteristic roots in F , prove that $T$ satisfies a polynomial of degree $n$ over $F$;

## SECTION - C

## ANSWER ANY TWO QUESTIONS :

( $\mathbf{2} \times 20=40$ )
18. a) If $v_{1}, v_{2}, \ldots, v_{n}$ are in V then show that either they are linearly independent or some $v_{k}$ is a linear combination of the preceding ones, $v_{i}, \ldots, v_{k-1}$.
b) If $v_{1}, \ldots, v_{n}$ in V have W as linear span and if $v_{1}, \ldots, v_{k}$ are linearly independent, show that we can find a subset of $v_{1}, v_{2}, \ldots, v_{n}$ of the form $v_{1}, v_{2}, \ldots, v_{k}, v_{i_{1}}, \ldots, v_{i_{r}}$ consisting of linearly independent elements whose linear span is also W .
19. a) If V is a finite-dimensional inner product space, show that V has an orthonormal basis.
b) If A is an algebra with unit element, over F , then show that A is isomorphic to a sub algebra of $A(V)$ for some vector space $V$ over $F$.
20. a) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, prove that for any polynomial $q(x) \in F(x), \mathrm{q}(\lambda)$ is a characteristic root of $q(T)$.
b) If $T \in A(V)$ has all its characteristic roots in F then show that there is a basis of $V$ in which the matrix of $T$ is triangular.

