SUBJECT CODE : MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2007 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE: MAJOR COREPAPER: VECTOR SPACES AND LINEAR TRANSFORMATIONSTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

ANSWER ALL QUESTIONS :

- 1. Define a vector space and give an example.
- 2. Determine whether the following vectors are linearly dependent or independent. (1,3,2), (2,1,0), (0,5,4).
- 3. If S is a subset of a vector space V, show that L(S) is a subspace of V.
- 4. If $u \in V$, $\alpha \in F$. Prove $\|\alpha u\| = |\alpha| \|u\|$.
- 5. If W is a subspace of a finite dimensional Inner product space, prove that $(W^{\perp})^{\perp} = W$
- 6. Define a linear transformation.
- 7. Define a singular element of A(V). Give an example.

8. Find the minimum polynomial of the matrix $A = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$.

- 9. If $T \in A(V)$ is regular, then show that VT = V.
- 10. Find the characteristic roots of $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

SECTION – B

ANSWER ANY FIVE QUESTIONS :

- 11. If V is a finite-dimensional vector space and if $u_1, u_2, ..., u_m$ span V, then show that a subset of $u_1, u_2, ..., u_m$ forms a basis of V.
- 12. If A and B are finite-dimensional subspace of a vector space V then show that $\dim(A+B) = \dim(A) + \dim(B) \dim(A \cap B)$.
- 13. If V and W are vector spaces over F then show that Hom(V,W) is also a vector space.
- 14. State and prove Schwarz inequality.
- 15. If V is finite-dimensional over F. Show that for S, $T \in A(V)$. (i) $r(ST) \leq r(T)$ (ii) $r(TS) \leq r(T)$

(5 X 8 = 40)

(10 X 2 = 20)

- 16. If $\lambda_1, \lambda_2, ..., \lambda_k$ in F are distinct characteristic roots of $T \in A(V)$ and if $v_1, v_2, ..., v_k$ are characteristic vectors of *T* belonging to $\lambda_1, ..., \lambda_k$ respectively prove that $v_1, v_2, ..., v_k$ are linearly independent over F.
- 17. If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, prove that T satisfies a polynomial of degree n over F;

SECTION – C

ANSWER ANY TWO QUESTIONS :

(2 X 20= 40)

- 18. a) If $v_1, v_2, ..., v_n$ are in V then show that either they are linearly independent or some v_k is a linear combination of the preceding ones, $v_i, ..., v_{k-1}$.
 - b) If $v_1,...,v_n$ in V have W as linear span and if $v_1,...,v_k$ are linearly independent, show that we can find a subset of $v_1, v_2,...,v_n$ of the form $v_1, v_2,...,v_k$, $v_{i_1},...,v_{i_r}$ consisting of linearly independent elements whose linear span is also W.
- 19. a) If V is a finite-dimensional inner product space, show that V has an orthonormal basis.
 - b) If A is an algebra with unit element, over F, then show that A is isomorphic to a sub algebra of A(V) for some vector space V over F.
- 20. a) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, prove that for any polynomial $q(x) \in F(x)$, $q(\lambda)$ is a characteristic root of q(T).
 - b) If $T \in A(V)$ has all its characteristic roots in F then show that there is a basis of V in which the matrix of T is triangular.
