STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2004-05 & thereafter)

SUBJECT CODE : MT/MC/LS44

(10 X 2 = 20)

B. Sc. DEGREE EXAMINATION, APRIL 2007 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	: MAJOR CORE	
PAPER	: LAPLACE TRANSFORMS, SEQUENCES	AND SERIES
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION - A

ANSWER ALL QUESTIONS:

1. Obtain $L(\sin^2 2t)$.

2. Prove that
$$L[f'(t)] = sL[f(t)] - f(0)$$
.

- 3. Find $L^{-1}\left(\frac{s}{s^2+b^2}\right)$
- 4. State the least upper bound axiom.
- 5. Define monotone sequence.
- 6. Prove that if a sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ converges then $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence.
- 7. Define pointwise convergence of sequence of functions.
- 8. Define conditional convergence and absolute convergence.
- 9. State comparison test.
- 10. Define even and odd function.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

(5 X 8 = 40)

11. Evaluate
$$L(t^n)$$
.

12. Find $L^{-1}\left(\frac{1}{(s^2+a^2)^2}\right)$.

13. Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^n\right\}_{n=1}^{\infty}$ is convergent.

- 14. State and prove nested-interval theorem.
- 15. State and prove the Cauchy criterion on uniform convergence.
- 16. If $\{a_n\}_{n=1}^{\infty}$ is a nonincreasing sequence of positive numbers and if $\sum_{n=1}^{\infty} a_n$ converges

then prove that $\lim_{n\to\infty} na_n = 0$.

- 17. Express $f(x) = x(-\pi < x < \pi)$ as a Fourier series with period 2π .
- 18. Obtain a sine series for f(x) = C in the range 0 to π .

SECTION – C

ANSWER ANY TWO QUESTIONS:

$$(2 X 20 = 40)$$

- 19. Solve $\frac{d^2 y}{dx^2} 3\frac{dy}{dx} + 2y = e^{3x}$.
- 20. a) If $\{s_n\}_{n=1}^{\infty}$ is a sequence of non-negative numbers and if $\lim_{n \to 0} s_n = L$ then prove that $L \ge 0$.
 - b) State and prove the fundamental theorem on alternating series.

21. Show that
$$x^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$$
 in the interval $(-\pi \le x \le \pi)$.
