STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2004-05)
SUBJECT CODE : MT/MC/DY64

B. Sc. DEGREE EXAMINATION, APRIL 2007
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE	$:$ MAJOR CORE
PAPER	$:$ DYNAMICS
TIME	$:$

MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS

(10X2=20)

1. Find an expression for the terminal velocity of a particle projected upward under gravity in a medium whose resistance varies as the square of its velocity.
2. If the distance x of a point moving on a straight line measured from a free fixed point on it and its velocity v are connected by the relation $4 v^{2}=25-x^{2}$ show the motion is simple harmonic.
3. A particle is projected with a velocity $8 \sqrt{2} \mathrm{~m} / \mathrm{sec}$ at an angle of elevation 45°. Find the range of the projectile.
4. Write down the expression to find the time of flight of a particle projected over an inclined plane of inclination ' β ' making an angle ' α ' to the horizontal with speed 'u' ?
5. Write the differential equation of the central orbit in polar form?
6. Define impulse of a force and an impulsive force.
7. A shot of mass 68 kg . fired with a velocity $1000 \mathrm{~m} / \mathrm{sec}$ from a gun of mass $50,000 \mathrm{~kg}$. Find the velocity of recoil of the gun if it is free to recoil in the direction of the shot?
8. What is the moment of inertia of a sphere of raidus ' r ' about the tangent at the end of the diameter.
9. State the parallel axis theorem.
10. Write down the expression for angular momentum and kinetic energy of a rigid body rotating about a fixed axis.
SECTION - B

ANSWER ANY FIVE QUESTIONS

11. A particle of mass is projected vertically upwards the resistance of air being " mk " times the velocity. Show that the greatest height attained by the particle is $\frac{v^{2}}{g}[\lambda-\log (1+\lambda)]$ where v is the terminal velocity of the particle and $\lambda \nu$ is the initial velocity.
12. A particle executing simple harmonic motion and while moving from the mean position to one extreme position its distances at three consecutive seconds are x_{1}, x_{2}, x_{3}. Show that its period is $\frac{2 \pi}{\cos ^{-1}\left(x_{1}+x_{3}\right) / 2 x_{2}}$.
13. Prove the path of a projectile is a parabola.
14. Find the range of the projectile on an inclined plane through the point of projection.
15. Find the law of force under which the conic $\frac{l}{r}=1+e \cos \theta$ is described.
16. A particle falls from a height ' h ' in time ' t ' upon a fixed horizontal plane. Prove that it rebounds and reaches the maximum height $e^{2} h$ in time $e t$.
17. Find the M.I. of an ellipse about the major axis.

SECTION - C

ANSWER ANY TWO QUESTIONS

18. a) Discuss the motion of a particle falling under gravity in a medium where resistance varies as the velocity.
b) Prove the composition of two SHM's of the same period and same straight line is again a simple harmonic motion.
19. a) A ball is projected so as just to clear two walls, the first of height ' a ' at a distance ' b ' from the point of projection and the second of height ' b ' at a distance ' a ' from the point of projection. Show that the range on the horizontal plane is $\frac{a^{2}+a b+b^{2}}{a+b}$.
b) A ball of mass 2 kg . impinges directly on a ball of mass 1 kg . which is at rest. If the velocity of the former before impact be equal to the velocity of the latter after impact show that the coefficient of restitution is $1 / 2$.
20. a) Derive the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=\frac{P}{h^{2} u^{2}}$ for the central orbit.
b) Define compound pendulum and show that the centre of suspension an oscillation are interchangeable in the case of a compound pendulum.

$$
A A A A A A A A A A
$$

