STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2004- 05 & thereafter)

SUBJECT CODE : MT/MC/CT24

MARKS : 100

B. Sc. DEGREE EXAMINATION, APRIL 2007 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE	: MAJOR CORE	
PAPER	: CONICS AND TRIGONOMETRY	
TIME	: 3 HOURS	MAX.

SECTION - A

ANSWER ALL QUESTIONS :

- Prove that every cartesian equation of second degree represents a conic. Find the 1. centre of the conic $5x^2 - 2y^2 + 10x - 4y - 7 = 0$.
- Show that the sum of the squares of two conjugate semi-diameters of an ellipse is 2. constant.
- 3. Obtain the equation of the asymptotes of the hyperbola.
- Find the angle between the asymptotes of the hyperbola. 4.
- Find the asymptotes of the hyperbola $3x^2 5xy 2y^2 + 17x + y + 14 = 0$. 5.
- Write down the expansion of $\tan 4\theta$. 6.
- Expand $\sin^4 \theta \cos^2 \theta$ in a series of cosines of multiples of θ . 7.

8. If
$$sin(A+iB) = x + iy$$
, prove that $\frac{x^2}{sin^2 A} - \frac{y^2}{cos^2 A} = 1$.

- 9. Find $\log(1-i)$.
- 10. Write Gregory's series.

SECTION – B

ANSWER ANY FIVE QUESTIONS :

- Find the nature of the conic $17x^2 12xy + 8y^2 + 46x 28y + 17 = 0$. 11.
- *P* and *Q* are extremities of two conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and S 12.

is a focus. Prove that $PQ^2 - (SP - SQ)^2 = 2b^2$.

- Prove that the product of the perpendiculars drawn from any point on a hyperbola to 13. its asymptotes is constant.
- Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$. 14.

15. Prove that
$$2^6 \cos^7 \theta = \cos 7\theta + 7\cos 5\theta + 21\cos 3\theta + 35\cos \theta$$
.

16. Prove that
$$\tanh^{-1}\left(\frac{x^2-1}{x^2+1}\right) = \log x \ (x > 0)$$

Express $\log \cos(x + iy)$ in the form A + iB. 17.

$$(5 X 8 = 40)$$

(10 X 2 = 20)

SECTION – C

ANSWER ANY TWO QUESTIONS :

(2 X20 = 40)

- 18. Find the centre of the conic $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$.
- 19. a) The asymptotes of a hyperbola are parallel to 2x + 3y = 0 and 3x 2y = 0. Its centre is at (1,2) and it passes through the point (5,3). Find its equation and its conjugate.
 - b) Obtain the equation of a rectangular hyperbola with reference to is asymptotes as axes.
- 20. a) If x, y, u, v are real numbers such that $u + iv = e^{x+iy}$, prove that $u^2 + v^2 = e^{2x}$ and $v = (\tanh y)u$.
 - b) If $\tan \log(x+iy) = a+ib$ where $a^2 + b^2 \neq 1$, prove that $\tan \log(x^2 + y^2) = \frac{2a}{1-a^2-b^2}$.

####