STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted from the academic year 2004-05 \& thereafter)
SUBJECT CODE : MT/AC/MP23

B. Sc. DEGREE EXAMINATION, APRIL 2007
 BRANCH III - PHYSICS
 SECOND SEMESTER

COURSE : ALLIED CORE
PAPER : MATHEMATICS FOR PHYSICS - II
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS:

1. Eliminate the arbitrary function from $z=f\left(x^{2}+y^{2}\right)$.
2. Solve $x+y \frac{\partial z}{\partial x}=0$.
3. Find the complete integral of $q=p^{2}$.
4. Find $L[\sin 3 t+\sinh 3 t]$
5. Find $L\left[t e^{-5 t}\right]$
6. Find $L^{-1}\left[\frac{1}{(s+2)^{3}}\right]$
7. State the formula for expanding a function as a Fourier series in the interval $[0,2 \pi]$.
8. Define conditional probability of an event and give the formula for finding it.
9. Show that $E^{2} Y_{x}=Y_{x+2 h}$.
10. If $\mathrm{f}(0)=0, f(1)=13, f(2)=15, f(3)=60$, find $\nabla^{3} f(3)$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

$(5 \times 8=40)$
11. Solve $p^{2} z^{2}+q^{2}=1$
12. Solve $p+q=p x+q y$
13. Find the Laplace Transform of:
a) $f(t)=e^{-t}$ when $0<t<4$

$$
=0 \quad \text { when } t>4
$$

b) $\frac{e^{-3 t}-e^{-2 t}}{t}$
14. Obtain the inverse Laplace ttransform of
a) $\frac{1}{(s+1)\left(s^{2}+2 s+2\right)}$
b) $\frac{s}{(s+3)^{2}+4}$
15. Find the sine series expansion of $y=\pi-x$ in the range 0 to π.
16. The probability of 3 students A, B, C solving a problem in statistics is $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. A problem in statistics is given to all the 3 students. What is the probability that,
(1) No one will solve the problem.
(2) Only one will solve the problem.
(3) At least one will solve the problem ?
17. Estimate the production for 1974 and 1976 from the following data:

Year	1971	1972	1973	1974	1975	1976	1977
Production In 100 tons	200	220	260	-	350	-	430

SECTION - C

ANSWER ANY TWO QUESTIONS:

18. a) Obtain the partial differential equation of all spheres whose centers lie on the z -axis.
b) Solve: $z=p x+q y+2 \sqrt{p q}$
c) Solve: $x^{2} p+y^{2} q=(x+y) z$ $(6+6+8)$
19. a) Use Laplace transform to solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=4$ subject to $y=2, \frac{d y}{d x}=3$, when $x=0$.
b) There are 3 boxes containing respectively 1 white, 2 red, 3 black balls; 2 white, 3 red, 1 black ball; 3 white, 1 red, 2 black balls. A box is chosen at random and from it two balls are drawn at random. The two balls are 1 red and 1 white. What is the probability that they came from the first box ?
(12+8)
20.

a) If $f(x)=-x$ in $-\pi<x<0$

$$
=x \text { in } 0<x<\pi .
$$

Expand $f(x)$ as a Fourier series in the interval $-\pi$ to π. Deduce that
$\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots$.
b) Using Lagrange's formula fit a polynomial to the given data

x	0	1	3	4
y	-12	0	6	12

