SUBJECT CODE : MT/AC/MP23

B. Sc. DEGREE EXAMINATION, APRIL 2007 BRANCH III – PHYSICS SECOND SEMESTER

COURSE	:	ALLIED CORE
PAPER	:	MATHEMATICS FOR PHYSICS - II
TIME	:	3 HOURS

MAX. MARKS: 100

SECTION – A

ANSWER ALL QUESTIONS:

(10X2=20)

(5X8=40)

- 1. Eliminate the arbitrary function from $z = f(x^2 + y^2)$.
- 2. Solve $x + y \frac{\partial z}{\partial x} = 0$.
- 3. Find the complete integral of $q = p^2$.
- 4. Find $L[\sin 3t + \sinh 3t]$
- 5. Find $L[te^{-5t}]$
- 6. Find $L^{-1}\left[\frac{1}{(s+2)^3}\right]$
- 7. State the formula for expanding a function as a Fourier series in the interval $[0,2\pi]$.
- 8. Define conditional probability of an event and give the formula for finding it.
- 9. Show that $E^2 Y_x = Y_{x+2h}$.
- 10. If f(0) = 0, f(1) = 13, f(2) = 15, f(3) = 60, find $\nabla^3 f(3)$.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. Solve $p^2 z^2 + q^2 = 1$
- 12. Solve p + q = px + qy
- 13. Find the Laplace Transform of:

a)
$$f(t) = e^{-t}$$
 when $0 < t < 0$
= 0 when $t > 4$
b) $\frac{e^{-3t} - e^{-2t}}{2}$

14. Obtain the inverse Laplace ttransform of

a)
$$\frac{1}{(s+1)(s^2+2s+2)}$$
 b) $\frac{s}{(s+3)^2+4}$

15. Find the sine series expansion of $y = \pi - x$ in the range 0 to π .

4

16. The probability of 3 students A, B, C solving a problem in statistics is $\frac{1}{2}, \frac{1}{3}$ and

 $\frac{1}{4}$ respectively. A problem in statistics is given to all the 3 students. What is the

probability that,

(1) No one will solve the problem.

- (2) Only one will solve the problem.
- (3) At least one will solve the problem ?

17. Estimate the production for 1974 and 1976 from the following data:

Year	1971	1972	1973	1974	1975	1976	1977
Production In 100 tons	200	220	260	-	350	-	430

SECTION – C

ANSWER ANY TWO QUESTIONS:

(2X20=40)

- a) Obtain the partial differential equation of all spheres whose centers lie on the z-axis.
 - b) Solve: $z = px + qy + 2\sqrt{pq}$ c) Solve: $x^2 p + y^2 q = (x + y)z$ (6+6+8)

19. a) Use Laplace transform to solve $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = 4$ subject to y = 2, $\frac{dy}{dx} = 3$, when x = 0.

b) There are 3 boxes containing respectively 1 white, 2 red, 3 black balls; 2 white, 3 red, 1 black ball; 3 white, 1 red, 2 black balls. A box is chosen at random and from it two balls are drawn at random. The two balls are 1 red and 1 white. What is the probability that they came from the first box ? (12+8)

20. a) If
$$f(x) = -x$$
 in $-\pi < x < 0$

 $= x \quad \text{in} \quad 0 < x < \pi$.

Expand f(x) as a Fourier series in the interval $-\pi$ to π . Deduce that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

b) Using Lagrange's formula fit a polynomial to the given data

Х	0	1	3	4
у	-12	0	6	12

(12+8)
