STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086

(For candidates admitted during the academic year 2009 – 10)

SUBJECT CODE: MT/PE/SP33

M. Sc. DEGREE EXAMINATION, NOVEMBER 2010 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : ELECTIVE

PAPER : STOCHASTIC PROCESSES

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A (5 X 8 = 40)

ANSWER ANY FIVE QUESTIONS

1. For a Poisson process N(t), show that

$$P_n(t) = \frac{e^{-\lambda t}(\lambda t)^n}{n!}$$
 where $P_n(t) = P\{N(t) = n\}$, for $n = 0,1,2,...$

- 2. Find the density function of S_n , the arrival time of n^{th} event. Assume that the process probabilistically restart itself.
- 3. Define Compound Poisson random variable. Find its moment generating function, mean and variance.
- 4. Define Renewal function m(t). Show that $m(t) = \sum_{n=1}^{\infty} F_n(t)$.
- 5. Show that with probability 1, $\frac{N(t)}{t} \to \frac{1}{\mu}$ as $t \to \infty$.
- 6. Find the limiting probabilities for the embedded M/G/1 queue.
- 7. Explain simple epidemic model. If T denote the time until the total population is infected, find E[T] and Var[T].

SECTION – B
$$(3 \times 20 = 60)$$

ANSWER ANY THREE QUESTIONS

8. If $N_i(t)$ represents the number of type-I events that occur by time t, i=1,2, then $N_1(t)$ and $N_2(t)$ are independent Poisson random variables having respective means λp and $\lambda(1-p)$, where

$$p = \frac{1}{t} \int_0^t P(s) ds.$$

- 9. If $E[R] < \infty$ and $E[X] < \infty$, Prove that
 - (i) With probability $1, \frac{R(t)}{t} \to \frac{E[R]}{E[X]}$ as $t \to \infty$
 - (ii) $\frac{E[R(t)]}{t} \to \frac{E[R]}{E[X]} \text{ as } t \to \infty$

/2/ MT/PE/SP33

10. For a Poisson process $\{N(t), t \ge 0\}$,

show that
$$P\{N(s) = k \ / \ N(t) = n\} = \binom{n}{k} \left(\frac{s}{t}\right)^k \left(1 - \frac{s}{t}\right)^{n-k}$$
 for $k = 0, 1, ..., n$. Also, calculate $E[N(t), N(t+s)]$.

- 11. For Yule process, show that $P_{ij}(t) = {j-1 \choose i-1} e^{-\lambda i t} (1-e^{-\lambda t})^{j-1}$, $j \ge i \ge 1$.
- 12. For all i,j and $t \ge 0$, prove the Kolmogorov backward equations,

$$P_{ij}^{'}(t) = \textstyle \sum_{k \neq i} q_{ik} \ P_{kj}(t) - v_i P_{ij}(t). \label{eq:problem}$$

Also, write the corresponding equations for two-state chain.

