STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2009 – 10 & thereafter)

SUBJECT CODE: MT/PC/RA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2010 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE : CORE

PAPER : REAL ANALYSIS

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A (5 X 8 = 40)

ANSWER ANY FIVE QUESTIONS

1. State and prove "The cantor intersection theorem".

- 2. a) Let (S,d) be a metric subspace of (M,d) and let X be a subset of S, then prove that X is open in S if and only if $X = A \cap S$ for some set A open in M.
 - b) Prove that X is compact where X is a closed subset of a compact metric space M.
- 3. a) Justify the following statement with a suitable example "the operations of limit and integration cannot always be interchanged".
 - b) State the Cauchy condition for uniform convergence of series.
- 4. a) Define orthogonal and orthonormal system of functions.
 - b) Verify that the trigonometric system $S = \{\varphi_0, \varphi_1 ...\}$ where $\varphi_0(x) = \frac{1}{\sqrt{2\pi}}$, $\varphi_{2n-1}(x) = \frac{\cos nx}{\sqrt{\pi}}$, $\varphi_{2n}(x) = \frac{\sin nx}{\sqrt{\pi}}$ is orthonormal on $[0, 2\pi]$.
- 5. State and prove Riemann Lebesgue lemma.
- 6. a) Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by the equation $f(x,y) = (\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Determine the Jacobian matrix $\overline{D} \bar{f}(x,y)$.
 - b) State and prove the Taylor's formula for function from \mathbb{R}^n to \mathbb{R}^1 .
- 7. a) Define a saddle point.
 - b) Find the maxima and minima of the function $x^3 + y^3 3x 12y + 20 = 0$

SECTION - B

 $(3 \times 20 = 60)$

ANSWER ANY THREE QUESTIONS

- 8. a) Prove that (i) the union of any collection of open sets is an open set.
 - (ii) a set S in \mathbb{R}^n is closed if and only if it contain all its adherent points
 - b) Let S be a subset of \mathbb{R}^n then prove that the following three statements are equivalent.
 - (i) S is compact
 - (ii) S is closed and bounded
 - (iii) Every infinite subset of S has an accumulation point in S
- 9. a) Distinguish between pointwise convergence and uniform convergence.
 - b) State and prove Cauchy condition for uniform convergence.
- 10. a) State and prove Jordan's theorem.
 - b) Obtain an integral representation for the partial sum of a fourier series.
- 11. a) State and prove the chain rule for derivatives.
 - b) Derive a sufficiency condition for equality of mixed partial derivatives.
- 12. State and prove the Inverse function theorem.