STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2009 – 10 & thereafter)

SUBJECT CODE : MT/PC/MA14 M. Sc. DEGREE EXAMINATION, NOVEMBER 2010 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	: CORE
PAPER	: MODERN ALGEBRA
TIME	: 3 HOURS

MAX. MARKS: 100

$\begin{array}{l} \text{SECTION} - \text{A} & (5 \text{ X } 8 = 40) \\ \text{ANSWER ANY FIVE QUESTIONS} \end{array}$

- 1. Prove that the number of p-Sylow's subgroups of a finite group is of the form 1+kp.
- 2. State and prove the Eisenstein irreducibility criterion of a polynomial with integer coefficients.
- 3. Define a module over a ring. Prove that any abelian group can be considered as an module over the ring of integers.
- 4. Prove that a polynomial of degree 'n' over a field can have at most 'n' roots in any extension field.
- 5. Prove that for every prime p and for every positive integer m there exists a field with p^m elements.
- 6. If F is a finite field and $\alpha \neq 0$, $\beta \neq 0$ are two elements of F then prove that there exists elements a and b in F such that $1 + \alpha a^2 + \beta b^2 = 0$.
- 7. Define a perfect field and prove that a field of characteristic zero is perfect.

$SECTION - B \qquad (3 X 20 = 60)$ ANSWER ANY THREE QUESTIONS

- 8. If 'p' is a prime number and if $p^{\alpha} | o(G)$, then prove that G has a subgroup of order p^{α} .
- 9. Prove that the polynomial ring F[X] is a Euclidean ring.
- 10. Prove that any finitely generated module over a Euclidean ring is a direct sum of a finite number of cyclic submodules.
- 11. Prove that an element $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F.
- 12. Prove that a finite division ring is a field.