STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2009-10)
SUBJECT CODE : MT/PC/CM34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2010
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	$:$ CORE
PAPER	$:$ CONTINUUM MECHANICS
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A

($5 \times 8=40$)

ANSWER ANY FIVE QUESTIONS

1. Establish the relation between stress tensor and the stress vector.
2. Determine the principal stress values and principal direction for
the stress tensor $\sigma_{i j}=\left(\begin{array}{ccc}\tau & \tau & \tau \\ \tau & \tau & \tau \\ \tau & \tau & \tau\end{array}\right)$.
3. The Langrangian description of a deformation is given by
$x_{1}=X_{1}+X_{3}\left(e^{2}-1\right), x_{2}=X_{2}+X_{3}\left(e^{2}-e^{-2}\right), x_{3}=e^{2} X_{3}$ where e is a constant .show that the Jacobian J does not vanish and determine the Eulerian equations describing this motion.
4. A linear (small strain) deformation is specified by $u_{1}=4 x_{1}-x_{2}+3 x_{3}, u_{2}=x_{1}+7 x_{2}, u_{3}=-3 x_{1}+4 x_{2}+4 x_{3}$. determine the principal strains and the principal deviator strains for these deformation.
5. For the steady velocity field $v=3 x_{1}^{2} x_{2} \hat{e}_{1}+2 x_{2}^{2} x_{3} \hat{e}_{2}+x_{1} x_{2} x_{3}^{2} \hat{e}_{3}$, determine the rate of extension at $P(1,1,1)$ in the direction of $r=\left(3 e_{1}-4 e_{3}\right) / 5$.
6. A two- dimensional incompressible flow is given by $v_{1}=A\left(x_{1}^{2}-x_{2}^{2}\right) / r^{4}, v_{2}=A\left(2 x_{1} x_{2}\right) / r^{4}, v_{3}=0$, where $r^{2}=x_{1}^{2}+x_{2}^{2}$. show that the continuity equation is satisfied by this motion. Show also that the flow is irrational.
7. Determine the elastic coefficient matrix for a continuum having an axis of elastic symmetry of order $\mathrm{N}=4$.Assume $C_{K M}=C_{M K}$.

SECTION - B

ANSWER ANY THREE QUESTIONS

8. (a) Show that the Cauchy stress quadric for a state of stress represented by $\Sigma=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ is an ellipsoid (the stress ellipsoid) when a,b and c are all of the same sign.
(b) The stress tensor at a point P is given with respect to the axes $O x_{1} x_{2} x_{3}$ by the values $\sigma_{i j}=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$. Determine the principal stress values and the principal stress directions represented by the axes $O x_{1}{ }^{*} x_{2}{ }^{*} x_{3}{ }^{*}$
9. (a) A displacement field is given by $x_{1}=X_{1}+A X_{2}, x_{2}=X_{2}+A X_{3}, x_{3}=X_{3}+A X_{1}$ where A is a constant. Calculate the Lagrangian linear strain tensor L and the Eulerian linear strain tensor E.Compare L and E for the case when A is very small.
(b) Under the restriction of a small deformation theory, $L=E$. Accordingly for a displacement field given by $u=\left(x_{1}-x_{3}\right)^{2} \stackrel{\Lambda}{e}_{1}+\left(x_{2}+x_{3}\right)^{2}{ }^{\Lambda} e_{2}-x_{1} x_{2} \hat{e}_{3}$, determine the linear strain tensor, the linear rotation tensor and the rotation vector at the point $P(0,2,-1)$.
10. (a) A velocity field is specified by the vector $v=x_{1}^{2} t{ }^{\Lambda} e_{1}+x_{2} t^{2} e_{2}+x_{1} x_{3} t \stackrel{\Lambda}{e_{3}}$. Determine the velocity and acceleration of the particle at $P(1,3,2)$ when $t=1$.
(b) Define a vortex line. Show that the equations for vortex lines are $\frac{d x_{1}}{q_{1}}=\frac{d x_{2}}{q_{2}}=\frac{d x_{3}}{q_{3}}$
(c) For the steady velocity field $v_{1}=x_{1}^{2} x_{2}+x_{2}^{3}, v_{2}=-x_{1}^{3}-x_{1} x_{2}^{2}, v_{3}=0$ determine expressions for the principal values of the rate of deformation tensor D at an arbitrary point $P\left(x_{1}, x_{2}, x_{3}\right)$.
11. (a) Using linear momentum principle, obtain the equation of motion of a moving continuum.
(b) For the velocity field $v_{i}=x_{i} /(1+t)$, Show that $\rho^{x_{1} x_{2} x_{3}}=\rho^{x_{1} x_{2} x_{3}}$.
12. Obtain the generalized Hooke's law for an isotropic body in terms of the elastic constants λ and μ.Show that the strain energy density function u^{*} for an isotropic Hookean solid may be expressed in terms of the strain tensor by $u^{*}=\frac{\lambda}{2} \varepsilon_{i i} \varepsilon_{i j}+\mu \varepsilon_{i j} \varepsilon_{i j}$.
