STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2009-10)
SUBJECT CODE: MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2010
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	: CORE
PAPER	$:$ COMPLEX ANALYSIS
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A

$(5 \times 8=40)$

ANSWER ANY FIVE QUESTIONS

1. If u_{1} and u_{2} are harmonic in a region Ω then prove that $\int_{\gamma} u_{1} * d u_{2}-u_{2} * d u_{1}=0$ for every cycle γ which is homologous to zero in Ω.
2. Obtain a product representation of $\sin \pi z$.
3. Prove that $\zeta(S) \Gamma(S)=\int_{0}^{\infty} \frac{x^{S-1}}{e^{x}-1} d x$.
4. Prove that the family F of analytic functions is totally bounded if and only if to every compact set $E \subset \Omega$ and every $\varepsilon>0$, it is possible to find $f_{1}, \ldots f_{n} \in F$ such that evry $f \in F$ satisfies $d\left(f, f_{j}\right)<\varepsilon$ for some f_{j}.
5. Prove that the functions $z=F(w)$ which map $|w|<1$ conformally onto polygons with angles $\alpha_{k} \pi(k=1,2, \ldots n)$ are of the form $F(w)=C \int_{0}^{\infty} \prod_{k=1}^{n}\left(w-w_{k}\right)^{-\beta_{k}} d w+C^{\prime}$ where $\beta_{k}=1-\alpha_{k}, w_{k}$ are points on the unit circle and C and C^{\prime} are complex constants.
6. Prove that (i) the sum of the residues of an elliptic function is zero.
(ii) A non constant elliptic function has equally many poles as it has zeors.
7. Show that $\wp(z+u)=-\wp(z)-\wp(u)+\frac{1}{4}\left[\frac{\wp \prime(z)-\wp \prime(u)}{\wp(z)-\wp(u)}\right]^{2}$

SECTION - B

$(\mathbf{3} \times 20=60)$

ANSWER ANY THREE QUESTIONS

8. a) Suppose that $u(z)$ is harmonic for $|z|<R$, continuous for $|z| \leq R$, prove that $u(a)=\frac{1}{2 \pi} \int_{|z|=R} \frac{R^{2}-|a|^{2}}{|z-a|^{2}} u(z) d \theta$ for all $|a|<R$.
b) State and prove Jensen's formula.
(10+10)
9. a) If $\sigma=\operatorname{Re}(s)>1$ and $\left\{p_{n}\right\}_{n=1}^{\infty}$ is an ascending sequence of primes, prove that

$$
\frac{1}{\zeta(s)}=\prod_{n=1}^{\infty}\left(1-p_{n}^{-s}\right) .
$$

b) Derive the Legendre's Duplication formula if $\xi(s)=\frac{1}{2} s(1-s) \pi^{-s} / 2 \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s})$ is entire and satisfies the relation $\xi(s)=\xi(1-s)$.
10. State and prove Arzela Ascoli's theorem.
11. State and prove Riemann mapping theorem.
12. a) Show that an elliptic function without poles is a constant. Prove that the zeros $a_{1}, \ldots a_{n}$ and poles $b_{1}, \ldots b_{n}$ of an elliptic function satisfy
$\sum_{j=1}^{n} a_{j}=\sum_{j=1}^{n} b_{j}(\bmod M)$.
b) If $\wp(z)$ denotes the Weierstrass \wp function show that $\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \neq 0}\left[\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right]$.

