STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008-09)

SUBJECT CODE: CH/MC/PC44

B.Sc. DEGREE EXAMINATION, APRIL 2010 BRANCH IV - CHEMISTRY FOURTH SEMESTER

COURSE PAPER		:	PHYS	OR – CORE ICAL CHEMISTE		Reg. No			
TIM	E	: 30 MINUTES				MAX. MA	MAX. MARKS: 30		
		TO B	E ANSV	WERED ON THE	QUESTION PA	PER ITSELF	•		
ANS	WER A	LL TH	E QUE	STIONS.			(30x1=30)		
I.	Choos	se the c	orrect a	inswer:					
1.		n one an essure	nong the	e following is a path b) volume		re d) he	eat capacity		
2.			_	following is true for b) $PV^{\gamma} = \text{constant}$	_	-	-		
3.	3. Which among the following gases will have the maximum value for 'a' the Vand Wall's constant?						he Vander		
	a) <i>H</i>	2		b) He	c) H_2O	d) <i>N</i>	e		
4.	4. The heat released during the formation of $2g$ of CH_4 is x J. Then its enthalpy of formation is (in joules) is						halpy of		
	a) 8:	x		b) <i>x</i>	c) 16 <i>x</i>	s) -8	8 <i>x</i>		
5.	Which	Which one among the following is the condition for spontaneity?							
	,	S = +v			b) $\Delta S = -v\epsilon$				
	c) ΔS	$_{sys} + \Delta$.	$S_{surr} =$	-ve	d) $\Delta S_{sys} + \Delta$	$S_{surr} = +ve$			
II.	Fill in	the bla	inks:						
6.	 6. When the ΔS_{total} is less than O, the process is 7. A system that cannot change matter & energy with the surroundings is called 								
7.							alled		
	system.								

8. Mathematical expression for Joule Thompson Inversion Temperature is _______.
9. When 2 moles of an ideal gas expands adiabatically, the work done is _______.
10. Calorific value of foods can be calculated from heat of _______ values.

III. State whether the following statements are TRUE or FLASE:

- 11. Volume is an extensive property.
- 12. $c_p c_v = R$ for all gases.
- 13. For ideal gases, $\Delta E = 0$ during an isothermal process.
- 14. Energy of the universe is a constant.
- 15. Zero Kelvin can be obtained by adiabatic demagnetization.
- 16. Activity is equal to concentration at higher concentrations.
- 17. $\Delta H_f^o = 0$ for diamond.
- 18. All real gases obey Vander Wall's equation of state.
- 19. A process can still be spontaneous even if $\Delta S_{sys} = -ve$.
- 20. The Δn_g for the reaction, $2Fe(s) + 3H_2O(g) \longrightarrow Fe_2O_3(s) + 3H_2(g)$ is zero.

IV. Answer the following in one or two lines:

- 21. What are exact differentials?
- 22. What is inversion temperature?
- 23. State Carnot theorem.

24. What is chemical potential?	
25. Define activity.	
26. State zeroeth law of thermodynamics.	
27. State law of mass action.	
28. Write Vander Wall's equation of state for two moles of a gas.	
29. State Hess' law.	
30. What is thermodynamic scale of temperature?	

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008-09)

SUBJECT CODE: CH/MC/PC44

B.Sc. DEGREE EXAMINATION, APRIL 2010 BRANCH IV - CHEMISTRY FOURTH SEMESTER

MAJOR - CORE

COURSE : PAPER : TIME : PHYSICAL CHEMISTRY-I

MAX. MARKS: 70 2½ HOURS

SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5x6=30)

- 1. Derive an expression for work done during a reversible adiabatic process.
- 2. Derive $c_p c_v = R$.
- 3. If the enthalpies of formation of glucose CO_2 and H_2O are x, y and z KJ mol⁻¹ respectively, calculate the enthalpy of combustion of glucose.
- 4. Explain the calorimetric determination of integral heat of solution.
- 5. Explain Carnot cycle.
- 6. Derive an expression for entropy of mixing.
- 7. How are absolute entropies evaluated from thermal data using third law and mention one apparent exception to the III law.

SECTION - C

ANSWER ANY TWO QUESTIONS:					
8		Explain Joule-Thompson effect. Derive an expression for work done during reversible.	(8)		
	- /	(i) isothermal (ii) adiabatic (iii) isobaric processe	es (12)		
9	. a)	What are the applications of Hess' law of constant heat summation?	(10)		
	b)	Derive Kirchoff's equation.	(5)		
	c)	Define integral and differential heats of solution.	(5)		
1	0. a)	Explain the need for 2 nd law of thermodynamics.	(6)		
	b)	Write four different statements of 2 nd law of thermodynamics.	(8)		
	c)	Derive Vant Hoff's isochore.	(6)		
11.	a)	Derive Maxwell's relations.	(6)		
	b)	Derive Clausius Clapeyron Equation.	(7)		
		Derive Gibbs-Duhem equation and explain its applications.	(7)		

