STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86

(For candidates admitted during the academic year 2009 – 10 & thereafter)

SUBJECT CODE: CH/PC/SI14

M.Sc. DEGREE EXAMINATION, NOVEMBER 2010 BRANCH IV- CHEMISTRY FIRST SEMESTER

~ ~			REG.NO					
	RSE: MAJOR CORE							
	R : STRUCTURAL	INORGANIC C	HEMISTRY	351553515555				
TIME	: 30 MINUTES			MAX.MARKS: 100				
			ΓΙΟΝ – A	(20x1=20)				
		ERED ON THE	QUESTION PA	APER ITSELF.				
	er all the questions:							
CHOOS	se the correct answer:							
1	Which of the following	has Frenkel defe	ects?					
1.	•			mide d) diamond				
	.,	, 8 I	.,					
2.	The number of atoms p	per unit cell is 2, t	the arrangement	is				
	a) octahedral	b) fcc	c) bcc	d) none of these				
2	XX7:41 · · · ·	1 1						
3.	With increase in temperature a) increases b) decr			d) may increase or decrea	0.0			
	a) ilicieases b) deci	eases c) lema	illis ullariecteu	d) may increase of decrea	se			
4.	The $C - O$ bond order	of the isoelectron	nic and isostructu	ural species of				
	$Ni(CO)_4$, $Co(CO)_4$, [
	a) $Ni(CO)_4 > [Fe(CO)_4]$	$(O)_4]^{2-} > [Co(C)$	$(0)_4]^-$					
	b) $[Fe(CO)_4]^{2-} > N$	$i(CO)_{\star} > [Co(C)]_{\star}$	0).1-					
	c) $Ni(CO)_4 > [Co(CO)_4]^- > [Fe(CO)_4]^{2-}$							
	d) none of these							
5	Panlacement of CO by	NO = in Ea(CO)	gives					
3.	Replacement of CO by NO^- in $Fe(CO)_5$ gives a) $Fe(NO)_4$ b) $Fe(NO)_5$ c) $Fe(NO)_3$ d) none of these							
	a) 1 c(1vo)4	6)10(110)5 0)	10(110)3	d) hone of these				
6.	Ferrocene is diamagne	tic and						
	a) 18 electron species		b) 20 electron species					
	c) 16 electron species		d) 24 electron species					
7	Th	e destale de la diffe	A1 (CH) :-					
7.	The number of $3e$, $2e^{-}$	b) 0	c) 1	d) 3				
	a) 2	b)	C) 1	u) 3				
8.	Organosilicon polymer	is						
	a) pyrosilicate	b) zeolite	c) carboru	ndum d) silicones				
9.	A well known example	* *	•	1) 11 00 40				
	a) Marshal's acid	b) H_3PO_4	c) H_3W	O_4 d) $H_3PO_412WO_3$				
10	. An example for saline	aankida ia						

c) SiC

b) *Fe*₃*C*

a) CaC_2

d) none of these

Fill in the blanks:

11. As a result of Schottky defect, the density of the crystal	
12. <i>F</i> - centres are lattice sites containing	
13. Electricity produced on applying stress is called	
14. The magnetic nature of nickelocene $(20e^-)$ is	
15. The structure of $[B_6H_6]^{2-}$ is	
Answer in a word or in a sentence:	
16. What is lattice energy?	
17. What is Bragg's law?	
18. What is meant by hapticity of a ligand?	
19. Give the names of B_4H_{10} and B_5H_9 .	

20. Name any one organometallic compound used as a catalyst.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2009 – 10 & thereafter)

SUBJECT CODE: CH/PC/SI14

M.Sc. DEGREE EXAMINATION, NOVEMBER 2010 BRANCH IV- CHEMISTRY FIRST SEMESTER

COURSE: MAJOR CORE

PAPER: STRUCTURAL INORGANIC CHEMISTRY

TIME : 2½ HOURS MAX.MARKS : 80

SECTION - B (5x8=40)

ANSWER ANY FIVE QUESTIONS:

- 1. Discuss the structure of (a) Rutile b) NaCl
- 2. How does Born equation help in calculating the lattice energy theoretically? What conclusion can be drawn from the equation.
- 3. How does band theory explain the conducting behavior of metals, n-type and p-type semiconductors.
- 4. Explain the concept of back bonding in metal nitrosyl using molecular orbital theory.
- 5. Discuss the preparation, properties and industrial applications of organometallic compounds of magnesium.
- 6. Discuss the structure and different types of bonding in diborane.
- 7. What are silicates? Draw the structure of four different types of silicates and give the name and formula of one example of each type.

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40)$

- 8. a) What types of defects are commonly produced in crystals? Discuss in detail about.
 - (i) Schottky defect
- (ii) Frenkel defect

(4+3+3)

- b) Discuss the principles involved in the electron diffraction studies.
- 9. a) Discuss the bonding and explain the properties of aromaticity of ferrocene using MO theory.
 - b) What are organometallic compounds? How are they classified?
- 10. a) What are carbides? Describe the structure of silicon carbide. Give its important uses in industry.
 - b) Apply Wade's rule to interpret the structure of (i) B_4H_{10} (ii) $B_{10}C_2H_{12}$