STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086. (For candidates admitted during the academic year 2011-2012 and thereafter)

SUBJECT CODE : 11PH/MC/MP34
B.Sc. DEGREE EXAMINATION NOVEMBER 2014

BRANCH III - PHYSICS
THIRD SEMESTER
REG. No.

COURSE	$:$	MAJOR - CORE
PAPER	$:$	MATHEMATICAL PHYSICS
TIME	$:$	30 MINUTES

MAX. MARKS : 30
SECTION - A
TO BE ANSWERED IN THE QUESTION PAPER ITSELF
ANSWER ALL QUESTIONS:

Choose the correct answer:

1. $\mathbf{a} \cdot \mathbf{b}=$
a) $\left|\mathbf{a} \prod \mathbf{b}\right| \cos \theta$
b) $|\mathbf{a}| \mathbf{b} \mid \sin \theta$
c) $|\mathbf{a}| \mathbf{b} \mid \cosh \theta$
d) $|\mathbf{a}||\mathbf{b}| \sinh \theta$
2. The relation between angular velocity $\boldsymbol{\omega}$, linear velocity \mathbf{v} and the position vector \mathbf{r} is given by \qquad .
a) $\boldsymbol{\omega}=\mathbf{v r}$
b) $\mathbf{v}=\mathbf{r} / \boldsymbol{\omega}$
c) $\mathbf{v}=\boldsymbol{\omega} \cdot \boldsymbol{r}$
d) $\mathbf{v}=\mathbf{w x} \mathbf{r}$
3. If F is a solenoidal vector function, which of the following condition should be satisfied?
a) $\operatorname{div} \mathbf{F}=0$
b) $\operatorname{curl} \mathbf{F}=0$
c) $\int \mathbf{F} . \mathbf{d r}=0$
d) $\nabla \cdot(\nabla \mathrm{xF})=0$
4. The gradient of a scalar field is always a \qquad .
a) Vector
b) scalar
c) numeric
d) sometimes vector and sometimes scalar
5. If $\int_{A}^{B} \mathbf{F} . \mathbf{d r}$ is independent of the point joining A and B , then \mathbf{F} is called \qquad field.
a) Non- conservative
b) Non-lamellar
c) Conservative
d) Curl
6. $L \frac{d^{2} q}{d t^{2}}-R \frac{d q}{d t}+\frac{q}{c}=E \sin \omega t$ is a differential equation of \qquad .
a) degree 1 and order 1
b) degree 1 and order 2
c) degree 2 and order 1
d) degree 2 and order 2
7. If m_{1} and m_{2} are the roots of a differential equation, then the complementary function is
a) $y=(A+B x) e^{m_{1}}{ }^{x}$
b) $y=(A+B x) e^{m}{ }_{2}$
c) $y=A e^{m}{ }_{1}{ }^{x}+e^{m}{ }_{2}{ }^{x}$
d) $y=e^{m}{ }_{1}{ }^{x}\left(A \cos _{2} x+B \operatorname{sinm}_{2} x\right)$
8. The Legendre equation has singular points \qquad .
a) $0, \infty$
b) $-\infty, \infty$
c) $-1,1$
d) 1,0
9. The value of $\frac{2}{3} P_{2}(x)+\frac{1}{3} P_{0}(x)$ is \qquad .
a) x
b) x^{3}
c) $2 / 3+x^{2}$
d) x^{2}
10. $\Gamma(\mathrm{n}+1)=$ \qquad .
a) n !
b) $(\mathrm{n}+1)$!
c) $(\mathrm{n}-1)$!
d) 0
11. The value of $\Gamma 1 / 2$ is \qquad .
a) π
b) $\sqrt{ } \pi$
c) ∞
d) 1
12. $\beta(8,9)-\beta(9,8)=$ \qquad -.
a) 17
b) -1
c) 0
d) 1
13. For a current flowing through an inductance L, the voltage drop across the inductance is
a) $L^{2} \frac{d I}{d t}$
b) $L^{2}\left(\frac{d I}{d t}\right)^{2}$
c) $L \frac{d I}{d t}$
d) $L\left(d^{2} I / d t^{2}\right)$
14. If x is the displacement of the particle, then its acceleration is \qquad .
a) 0
b) $\frac{d x}{d t}$
c) $d^{2} x / d t^{2}$
d) $d^{2} t / d x^{2}$
15. If \mathbf{r} is the position vector, curl \mathbf{r} is \qquad -
a) 1
b) 3
c) r
d) 0

State whether the following statements are true or false:

16. The vector product of two vectors is commutative.
17. The work done by a force is a scalar product of two vectors.
18. The physical significance of curl is rotation.
19. $\frac{d y}{d x}+P y=Q$ is called a homogeneous differential equation.
20. $\beta(\mathrm{m}, \mathrm{n})=\frac{1}{n} \int_{0}^{\infty} e^{-\frac{1}{n}} \mathrm{dy}$.

Fill in the blanks;

21. If the dot product of two vectors is zero, then the vectors are \qquad to each other.
22. In the charge free region, the Laplace's equation is \qquad .
23. A differential equation involving derivatives with respect to a single independent variable is called \qquad .
24. The value of $\mathrm{P}_{0}(\mathrm{x})=$ \qquad .
25. The gamma function is defined as \qquad .

Answer briefly:

26. Write the expression for $\mathbf{a x}(\mathbf{b} \times \mathbf{c})$.
27. Define divergence of a vector function.
28. Write the equation of continuity in vector form in electromagnetism.
29. Write the Legendre's equation.
30. Find the auxiliary equation of $d^{2} y / d x^{2}-6(d y / d x)+9 y=0$

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086. (For candidates admitted during the academic year 2011-2012 and thereafter)

SUBJECT CODE : 11PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2014

BRANCH III - PHYSICS
THIRD SEMESTER
COURSE : MAJOR - CORE
PAPER : MATHEMATICAL PHYSICS
TIME : $\quad 21 / 2$ HOURS
MAX. MARKS : 70

SECTION - B

Answer any Five Questions:
5x5=25

1. A force $\mathrm{F}=3 \mathrm{i}+2 \mathrm{j}-4 \mathrm{k}$ is applied at the point $(1,-1,2)$. Find the moment of the force about the point $(2,-1,3)$.
2. If $A=2 x z^{2} \mathbf{i}-y z \mathbf{j}+3 x z^{3} \mathbf{k}$, find $\nabla x(\nabla x \mathbf{A})$ at the point $(1,1,1)$.
3. Evaluate $\int \mathbf{F}$. $\mathbf{d r}$ where $\mathbf{F}=x y \mathbf{i}+\left(x^{2}+y^{2}\right) \mathbf{j}$ and C is the arc of the curve $y=x^{2}-4$ from $(2,0)$ to $(4,12)$ in the $x-y$ plane.
4. State Gauss Divergence theorem. Apply the theorem to deduce Gauss law in differential form.
5. Show that for L-R d.c circuit, the current I flowing in the circuit is given by,
$I=E / R\left(1-e^{\frac{-R t}{L}}\right)$.
6. Evaluate $\int_{0}^{\infty} \sqrt[4]{x} e^{-\sqrt{x}} d x$.
7. Derive the relation between beta and gamma function.
SECTION - C

Answer any Three Questions:

8. a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-z=3$ at the point $(2,-1,2)$.
b) If $\frac{\mathrm{da}}{\mathrm{dt}}=\mathbf{u} \times \mathbf{a}$ and $\frac{\mathrm{db}}{\mathrm{dt}}=\mathbf{u} \times \mathbf{b}$, then prove that $\frac{\mathrm{d}(\mathbf{a x b})}{\mathrm{dt}}=\mathbf{u} \times(\mathbf{a} \times \mathbf{b})$.
9. State and prove Stoke's theorem.
10. a) Write the Bernoulli's equation and solve $\frac{d y}{d x}+x y=x^{3} y^{3}$.
b) Derive the equation of motion for the free oscillations of a spring.
11. a) Solve the differential equation $\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}+\frac{g}{t} \mathrm{x}=\frac{g}{l} \mathrm{~L}$

Where $\mathrm{g}, 1, \mathrm{~L}$ are constants subject to the conditions $\mathrm{x}=\mathrm{a}, \frac{\mathrm{dx}}{\mathrm{dt}}=0$ at $\mathrm{t}=0$.
b) Solve: $d^{2} y / d x^{2}-8(d y / d x)+15 y=0$.
12. Find Rodrigue's formula for Legendre polynomial.

