STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-2012 and thereafter)

SUBJECT CODE : 11PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2014 BRANCH III - PHYSICS THIRD SEMESTER REG. No.

		REG. No.				
CO	URSE : MA	JOR - CORE				
		THEMATICAL PH	YSICS			
TIN		MINUTES		MAX. MARKS : 30		
	IL	SECTIO				
	TO DE AN			TCEL E		
			QUESTION PAPER I			
	SWER ALL QUEST			(30x1=30)		
Cho	oose the correct answ	er:				
1.	a.b =			d) a b sinhθ		
	a) $ \mathbf{a} \mathbf{b} \cos\theta$	b) $ \mathbf{a} \mathbf{b} \sin \theta$	c) $ \mathbf{a} \mathbf{b} \cosh \theta$	d) $ \mathbf{a} \mathbf{b} \sinh\theta$		
	/ I I I I	/	/ 1 1 1 1	× 1 1 1 1		
2	2. The relation between angular velocity $\boldsymbol{\omega}$, linear velocity \mathbf{v} and the position vector \mathbf{r} is					
	given by a) $\omega = vr$ b) $v = r/\omega$ c) $v = \omega .r$ d) $v = w x r$					
		$$ b) $\mathbf{v} = \mathbf{r}/\omega$	$a) \mathbf{v} = \mathbf{o} \mathbf{r}$	d) $y = y y y$		
	a) $\omega = vr$	\mathbf{U}) $\mathbf{v} = \mathbf{I}/\mathbf{w}$	$c) v - \omega r$	$\mathbf{u} \mathbf{v} = \mathbf{w} \mathbf{x} \mathbf{r}$		
2	ICT : : 1.1	-t f	£ 41 £ 11			
3.				on should be satisfied?		
	a) div $\mathbf{F} = 0$	b) curl $\mathbf{F} = 0$	c) $\int \mathbf{F} \cdot \mathbf{dr} = 0$	d) $\nabla . (\nabla \mathbf{x} \mathbf{F}) = 0$		
4.	The gradient of a scal	ar field is always a		r and sometimes scalar		
	a) Vector b) sc	alar c) numeric	d) sometimes vector	r and sometimes scalar		
	, ,	,	,			
5	If (^B E dr is indense	na A and D than E is a	allad			
э.	21	ident of the point joint	ng A and B, then F is c			
	field.					
	a) Non- conservative	b) Non-lamellar	c) Conservative	d) Curl		
6. $L\frac{d^2q}{dt^2} - R\frac{dq}{dt} + \frac{q}{c} = Esin \omega t$ is a differential equation of						
0.						
	a) degree 1 and order		b) degree 1 and or			
	c) degree 2 and order	· 1	d) degree 2 and or	der 2		
7.	If m_1 and m_2 are the roots of a differential equation, then the complementary function is					
	a) $y = (A+Bx)e^{m_1 x}$		b) $y = (A+)$	$Bx)e^{m_2 x}$		
	c) $y = A e^{m_1 x} + e^{m_2 x}$, 3	$(Acosm_2x+Bsinm_2x)$		
				(
8	The Legendre equation a) $0, \infty$					
0.		h) ~ ~	·	d) 1, 0		
	a) $0, \infty$	$0) - \infty, \infty$	C) - 1, 1	u) 1, 0		
	2	1				
9.	The value of $\frac{2}{2}P_2(x)$ +	$\frac{1}{3}P_0(x)$ is b) x ³				
	a) x	b) x^3	$\frac{1}{c} 2/3 + x^2$	d) x^2		
		0,11	•) =/ • · · A	~, ··		
10. Γ (n+1) =						
10.	a) n!	 b) (n+1)!	c) $(n \ 1)!$	0 (b		
	a) 11!	U) (II⊤1)!	c) (n-1)!	d) 0		

..2

- 11. The value of $\Gamma 1/2$ is _____. a) π b) $\sqrt{\pi}$ c) ∞ d) 1 12. $\beta(8,9) - \beta(9,8) =$ _____. a) 17 b) -1 c) 0 d) 1
- 13. For a current flowing through an inductance L, the voltage drop across the inductance is

$$\overline{a}$$
 $L^2 \frac{dI}{dt}$ $L^2 (\frac{dI}{dt})^2$ $L^2 (\frac{dI}{dt})^2$ $L^2 (\frac{dI}{dt})^2$

- 14. If x is the displacement of the particle, then its acceleration is _____. a) 0 b) $\frac{dx}{dt}$ c) d^2x/dt^2 d) d^2t/dx^2
- 15. If **r** is the position vector, curl **r** is _____.a) 1b) 3c) rd) 0

State whether the following statements are true or false:

- 16. The vector product of two vectors is commutative.
- 17. The work done by a force is a scalar product of two vectors.
- 18. The physical significance of curl is rotation.
- 19. $\frac{dy}{dx}$ + Py = Q is called a homogeneous differential equation.
- 20. $\beta(m,n) = \frac{1}{n} \int_0^\infty e^{-\frac{1}{n}} dy.$

Fill in the blanks;

- 21. If the dot product of two vectors is zero, then the vectors are ______ to each other.
- 22. In the charge free region, the Laplace's equation is _____.
- 23. A differential equation involving derivatives with respect to a single independent

variable is called ______.

- 24. The value of $P_0(x) =$ _____.
- 25. The gamma function is defined as _____.

Answer briefly:

- 26. Write the expression for **a**x (**b** x **c**).
- 27. Define divergence of a vector function.
- 28. Write the equation of continuity in vector form in electromagnetism.

29. Write the Legendre's equation.

30. Find the auxiliary equation of $d^2y/dx^2 - 6(dy/dx) + 9y = 0$

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-2012 and thereafter)

SUBJECT CODE : 11PH/MC/MP34 B.Sc. DEGREE EXAMINATION NOVEMBER 2014 BRANCH III - PHYSICS THIRD SEMESTER

COURSE	:	MAJOR - CORE	
PAPER	:	MATHEMATICAL PHYSICS	
TIME	:	2 ½ HOURS	MAX. MARKS: 70

SECTION – B

Answer any Five Questions:

- 1. A force F = 3i+2j-4k is applied at the point (1,-1,2). Find the moment of the force about the point (2,-1,3).
- 2. If $\mathbf{A} = 2\mathbf{x}\mathbf{z}^2\mathbf{i}-\mathbf{y}\mathbf{z}\mathbf{j}+3\mathbf{x}\mathbf{z}^3\mathbf{k}$, find $\nabla \mathbf{x}(\nabla \mathbf{x}\mathbf{A})$ at the point (1,1,1).
- 3. Evaluate $\int \mathbf{F} \cdot \mathbf{dr}$ where $\mathbf{F} = xy\mathbf{i} + (x^2 + y^2)\mathbf{j}$ and C is the arc of the curve $y = x^2 4$ from (2,0) to (4,12) in the x-y plane.
- 4. State Gauss Divergence theorem. Apply the theorem to deduce Gauss law in differential form.
- 5. Show that for L-R d.c circuit, the current I flowing in the circuit is given by,

$$I = E/R (1 - e^{\frac{-Rt}{L}}).$$

- 6. Evaluate $\int_0^\infty \sqrt[4]{x} e^{-\sqrt{x}} dx$.
- 7. Derive the relation between beta and gamma function.

SECTION - C

Answer any Three Questions:

8. a) Find the angle between the surfaces $x^2+y^2+z^2=9$ and $x^2+y^2-z=3$ at the point (2,-1, 2).

b) If
$$\frac{d\mathbf{a}}{dt} = \mathbf{u} \times \mathbf{a}$$
 and $\frac{d\mathbf{b}}{dt} = \mathbf{u} \times \mathbf{b}$, then prove that $\frac{d(\mathbf{a}\mathbf{x}\mathbf{b})}{dt} = \mathbf{u} \times (\mathbf{a}\mathbf{x}\mathbf{b})$.

- 9. State and prove Stoke's theorem.
- 10. a) Write the Bernoulli's equation and solve $\frac{dy}{dx} + xy = x^3y^3$. b) Derive the equation of motion for the free oscillations of a spring.
- 11. a) Solve the differential equation $d^2x/dt^2 + \frac{g}{t}x = \frac{g}{l}L$ Where g,l,L are constants subject to the conditions x = a, $\frac{dx}{dt} = 0$ at t = 0. b) Solve: $d^2y/dx^2 - 8(dy/dx) + 15y = 0$.
- 12. Find Rodrigue's formula for Legendre polynomial.

5x5=25