STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/EM54

B.Sc. DEGREE EXAMINATION NOVEMBER 2014 BRANCH III - PHYSICS FIFTH SEMESTER

REG. No.

TIME	:	30 MINS.	MAX. MARKS : 30
PAPER	:	ELECTROMAGNETISM	
COURSE	:	MAJOR – CORE	

SECTION – A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF **ANSWER ALL QUESTIONS:**

 $(30 \times 1 = 30)$

I. CHOOSE THE CORRECT ANSWER:

aotinan

1.	Electric field lines of a point charge is	
	a) radially outward and never intersects	b) radially inward and never intersects
	c) radially outward and intersects	d) radially inward and intersects

2. Gauss's law gives the a) net charge enclosed within a closed surface b) net surface charge density enclosed within a closed surface c) net volume charge density enclosed within a closed surface d) net point charges enclosed within a closed surface

MALOD CODE

3. The normal component of E is

- a) discontinuous by an amount σ/ϵ_0 at any boundary
- b) continuous by an amount σ/ϵ_0 at any boundary
- c) discontinuous by an amount ρ/ϵ_0 at any boundary
- d) continuous by an amount ρ / ε_0 at any boundary

4. Two principal mechanisms by which electric fields can distort the charge distribution of a dielectric atom are

a) stretching and vibrating	b) stretching and rotating
c) rotating and vibrating	d) rotating and oscillating

5. The volume bound charge in a homogeneous linear dielectric is proportional to a) density of free charge b) mass of free charge c) polarity of free charge d) volume of free charge.

- 6. Permittivity of free space ε_0 has the value a) $8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$ b) 8.85x10⁻¹² C/Nm d) 8.85×10^{12} C/Nm c) $8.85 \times 10^{12} \text{ C}^2/\text{Nm}^2$
- 7. The magnetic field at a distance r from a long straight wire carrying a steady current I is given by

a) $B = \mu_0 I/2\pi r^2$ b) $B = \mu_0 I/2\pi r$ c) $B = \mu_0 I/4\pi r$ d) $B = \mu_0 I/4\pi r^2$	a) $B = \mu_0 I / 2\pi r$	b) B = $\mu_0 I/2\pi r$	c) B= $\mu_0 I/4\pi r$	d) $B=\mu_0 I/4\pi r^2$
---	---------------------------	-------------------------	------------------------	-------------------------

	0	/2/			11PH/MC/EM54	
	8.	Continuity equation is a) ∇ . J = $\partial \sigma / \partial t$		c) ∇ . J = - $\partial \sigma / \partial t$	d) ∇ . J = - $\partial p / \partial t$	
	9.	Steady currents produ a) varying independer c) constant independe	nt of time	at are b) varying in time d) constant in time		
	10.	When the magnetizati are referred to as	on of the materials is	parallel to the applied	magnetic field they	
		a) ferromagnets	b) diamagnets	c) paramagnets	d) ferrimagnets	
	11.	A material which obe a) non linear medium c) homogeneous medi		b) linear medium d) heterogeneous me	dium	
	12.	Internal currents cance a) linearly decreases		nen the magnetization is) linearly increases	d) non uniform	
	13.	Displacement current a) $\varepsilon_0 \partial E/\partial t$	• •	c) $\epsilon_0 \mu_0 \partial E / \partial t$	d) $\epsilon\mu \partial E/\partial t$	
	14. Greater the value of inductance, thea) easier it is to change the currentb) harder it is to change the currentc) not at all possible to change the currentd) possible to change current with the application of an external field.					
	15.	For steady currents, a) ∇ . J = - ∞	b) ∇. J = 1	c) ∇ . J = 0	d) ∇ . J = + ∞	
II.	FI	LL IN THE BLANK	S:			
	16. Coulomb's law gives the acting between point charges.					
	17	Polarizability tensor f	or a molecule has a s	et of co	mnonents	

- 17. Polarizability tensor for a molecule has a set of _____ components.
- 18. Magnetic forces do no work is a direct consequence of _____ law.
- 19. Bound currents are those where every charge is ______ to a particular atom.
- 20. If a current flows it will be in such a direction that the magnetic field it produces tends
 - to ______ the change in flux that induced the emf.

III. STATE WHETHER TRUE OR FALSE:

- 21. Capacitance is purely geometrical quantity determined by sizes, shapes and separation of two conductors.
- 22. The dipole **p** in a uniform field **E** experiences a torque $N = p \times E$
- 23. Currents flowing in opposite directions repel each other.

- 24. When a magnetic field is applied, a net alignment of dipoles occur and the medium becomes magnetically polarized.
- 25. A changing magnetic field induces an electric field.

IV. ANSWER THE FOLLOWING :

- 26. State the principle of superposition of charges.
- 27. Define polarization.
- 28. Why magnetic forces do no work?
- 29. What are ferromagnetic materials?
- 30. Write Maxwell's equations.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/EM54 B.Sc. DEGREE EXAMINATION NOVEMBER 2014 BRANCH III - PHYSICS FIFTH SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	ELECTROMAGNETISM	
TIME	:	2 ¹ / ₂ HOURS	MAX. MARKS : 70
		SECTION – B	$(5 \times 5 = 25)$
		ANSWER ANY FIVE QUESTIONS	

- 1. Find the capacitance of two concentric spherical metal shells with radii a and b.
- 2. A charge of 5c is at the centre of a sphere of radius 2m.
 - a) How many electric flux lines originate on the charge?
 - b) What is electric field at the surface of the sphere?
 - c) How many electric field lines emerge through an area of $\frac{1}{2}m^2$ of the surface of the sphere?
- 3. Find the magnetic field of a very long solenoid consisting of 200 closely wound turns per unit length on a cylinder of radius 5cm and carrying a steady current 3 amperes.
- 4. Derive Ampere's law in terms of vector potential.
- 5. Suppose a cyclotron is operated at an oscillator frequency of 12 Mhz and has a 'dee' radius R = 53 cm.
 - a) What is the magnitude of the magnetic field needed for deuteron to be accelerated in the cyclotron? The deuteron mass $m = 3.34 \times 10^{-27} kg$.
 - b) What is the resulting kinetic energy of the deuterons?
- 6. A uniform magnetic field $B_0(t)$ pointing straight up fills the entire circular region of space. If it is changing with time, what is the induced electric field?
- 7. Derive Neumann's formula which highlights the significance of mutual inductance.

$\begin{array}{c} \text{SECTION C} \\ \text{ANSWER ANY THREE QUESTIONS} \end{array} (3 x 15 = 45) \end{array}$

- 8. Obtain an expression for the energy stored in the configuration of point charges.
- 9. Derive an expression for field of a polarized object.
- 10. Discuss the motion of a particle moving along a path when the electric and magnetic fields are acting in mutually perpendicular directions.
- 11. Obtain an expression for the field produced by a magnetized object.
- 12. Derive an expression for energy in a magnetic field.
