STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011–12 & thereafter)

SUBJECT CODE : 11MT/ME/NA53

B. Sc. DEGREE EXAMINATION, NOVEMBER 2014 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	:	:	MAJOR – ELECTIVE
PAPER	:	:	NUMERICAL ANALYSIS
TIME	:	:	3 HOURS

MAX. MARKS : 100

(10X2=20)

SECTION – A ANSWER ALL THE QUESTIONS

- 1. Write the order of convergence of Newton-Raphson method.
- 2. State the condition for convergence of Gauss-Seidel method.
- 3. State Stirling's formula of interpolation.
- 4. Prove $\Delta \nabla = \Delta \nabla$.
- 5. Write the divided difference table given

Х	1	2	7	8
f(x)	1	5	5	4

- 6. State Newton-Raphson formula for iteration.
- 7. State Trapezoidal rule.
- 8. State Simpson's 1/3 rule.
- 9. Find y(0.1) given $y' = \frac{x+y}{z}$, y(0) = 1 by Euler method.
- 10. Write down iteration formula for y in solving $y' = f(x, y), y(x_0) = y_0$ due to picard.

SECTION – B ANSWER ANY FIVE QUESTIONS

(5X8=40)

- 11. Find the positive root of $x \cos x = 0$ by bisection method.
- 12. Solve the following system of equations by Gauss-Elimination method. 2x + 3y - z = 5, 4x + 4y - 3z = 3 and 2x - 3y + 2z = 2.
- 13. Find a polynomial of degree four which takes values

Х	2	4	6	8	10
У	0	0	1	0	0

14. Find the values of y at x = 21 and x = 28 from the following data.

Х	20	23	26	29
у	0.3420	0.3907	0.4384	0.4848

15. Find the first, second derivatives of f(x) at x = 1.5 if

Х	1.5	2	2.5	3	3.5	4
f(x)	3.375	7	13.625	24	38.875	59

16. Evaluate $\int_0^{10} \frac{dx}{1+x^2}$ by using (i) Simpson's $\frac{1}{3}$ rule (ii) Simpson's $\frac{3}{8}$ rule.

17. Using Taylor series method, find y at x = 0.1, 0.2 given $\frac{dy}{dx} = x^2 - y$, y(0) = 1 (correct to 4 decimal places).

SECTION – C (2X20=40) ANSWER ANY TWO QUESTIONS

- 18. (i) Solve the following systems of equations by using Gauss-Seidel method (correct to 3 decimal places):
 - 28x + 4y z = 32
 - x + 3y + 10z = 24
 - 2x + 17y + 4z = 35
 - (ii) Using Newton's method, find the root between 0 and 1 of $x^3 = 6x 4$ correct to 5 decimal places.
- 19. (i) Using Lagrange's formula of interpolation fin y(9.5) given

	х	7	8	9	10		
	У	3	1	1	9		
(ii) Given the following table find $y(35)$ by using Stirling's formula.							
	х	20	30	40	50		
	у	512	439	346	243		

- 20. (i) Obtain the values of y at x = 0.1, 02 using R.K.method of fourth order for the equation y' = -y given y(0) = 1.
 - (ii) Given the following data find the maximum value of y x -1 1 2 3y -21 15 12 3

....