STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted during the academic year 2011-12 \& thereafter)
SUBJECT CODE : 11MT/MC/ME54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2014
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	: MAJOR - CORE
PAPER	$:$ MECHANICS
TIME	$: 3$ HOURS

MAX. MARKS : 100
SECTION - A ANSWER ALL THE QUESTIONS

1. State the Triangle law of forces.
2. Define moment of a force about a point.
3. Define cone of friction.
4. State any two laws of static friction.
5. Define Simple Harmonic Motion.
6. Prove that in a SHM, if f is the acceleration, v is the velocity at any moment and T is the periodic time, then $f^{2} T^{2}+4 \pi^{2} v^{2}$ is a constant.
7. Define time of flight of a projectile.
8. A particle is projected with a velocity of $490 \mathrm{~m} / \mathrm{sec}$, at an elevation of 30°. Find the greatest height attained.
9. Define central force.
10. Write the components of acceleration in the radial and transverse directions.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

11. A string ABCD hangs from fixed points A, D carrying a weight of 12 kgm at B and a weight W at C . AB is inclined at 60° to the horizontal; BC is horizontal and CD is inclined at 30° to the horizontal. Find W.
12. A body of weight W is in equilibrium on a rough inclined plane of angle $\alpha(\neq \lambda)$ under the action of a force P upwards at an angle θ to the line of greatest slope, in a vertical plane through the line of greatest slope. Find P if the equilibrium is limiting, where λ is the angle of friction.
13. A rectangular thin plate a feet long, h feet high rests on a rough horizontal plane. A string attached to the top of the plate is pulled horizontally with an increasing force.
Prove that the plate will tilt when $\mu>\frac{a}{2 h}$.
14. A particle is moving with simple harmonic motion and while moving from the mean position to one extreme position its distances at three consecutive seconds are x_{1}, x_{2}, x_{3}. Show that its period is $\frac{2 \pi}{\cos ^{-1}\left(\frac{x_{1}+x_{3}}{2 x_{2}}\right)}$.
15. Prove that the path of a projectile is a parabola.
16. Prove the relation $g T^{2}=2 R \tan \alpha$, where T is the time of flight and R is the horizontal range, α is the angle of projection. If $\alpha=60^{\circ}$, find in terms of R, the height of the projectile, when it has moved through a distance equal to $\frac{3 R}{4}$.
17. Derive the $\mathrm{p}-\mathrm{r}$ equation of a central orbit.

SECTION - C
 ANSWER ANY TWO QUESTIONS

(2X20=40)
8. (a) The resultant of two forces P and Q acting at an angle θ is R ; that of the forces 2 P and Q acting at the same angle is 2 R and the resultant of forces P and 2 Q acting at $\left(180^{\circ}-\theta\right)$ is $2 R$. Prove that $P: Q: R=\sqrt{6}: \sqrt{2}: \sqrt{5}$.
(b) State and prove Varignons Theorem.
19. (a) A uniform ladder of length l metres rests on a rough horizontal ground with its upper end projecting very slightly over a smooth horizontal rod at a height a metres above the ground. If the ladder is about to slip down, show that the coefficient of friction is equal to $\frac{a \sqrt{l^{2}-a^{2}}}{l^{2}+a^{2}}$.
(b) Discuss the motion of a particle falling under gravity in a medium whose resistance varies as the square of the velocity. Also find the relation between velocity and displacement .
20. (a) A particle is projected so as to clear a wall of height h at a horizontal distance a and to have a range b from the point of projection. Find the velocity of projection.
(b) Find the law of force towards the pole for the orbit $r^{n}=a^{n} \cos n \theta$.

$A \operatorname{A} A A A A$

