STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI-600 086

M.Phil. DEGREE: BRANCH I - MATHEMATICS

(Effective from the academic year 2011-2012)

SUBJECT CODE: 11MT/RO/FA205

END SEMESTER EXAMINATION APRIL 2012

TITLE: FUNCTIONAL ANALYSIS

TIME: 3 HOURS MAX: 100 MARKS

Answer any five questions

5×20=100

- 1. Prove the completeness of l_p and L_p .
- 2. State and prove Principle of Contraction Mapping.
- 3. State and prove Arzela's theorem.
- State and prove the spectral properties of bounded self adjoint operators.
- Prove that every positive bounded self adjoint linear operator on a complex Hilbert space has a positive square root which is unique and commutes with every bounded linear operator.
- 6. In complete space E let x(t) be a continuous function with $t \in [a,b]$ and let A_{τ_n} be a sequence of partitions of the interval [0,1] such that $\tau_n \to 0$ as $n \to \infty$. Prove that if we form the integral sums $S[A_{\tau_n}, x(t)]$, then they tend to a limit $S = \lim_{n \to \infty} S[A_{\tau_n}, x(t)]$ as $n \to \infty$, where the limit S does not depend on the choice of A_{τ_n} .
- 7. a) Define Extremal point.
 - b) Prove that Haar condition is sufficient for the uniqueness of the best approximation.
 - c) State and prove the Haar uniqueness theorem.
- 8. State and prove the necessary and sufficient condition for metrization.