STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI – 600 086 M. Phil. DEGREE EXAMINATION APRIL 2012 DEPARTMENT OF MATHEMATICS ADVANCED ALGEBRA

CLASS: M.PHIL. CODE:11MT/RO/AA2 05

MAX: 100 MARKS TIME: 3 HOURS

Answer any Five questions (Each question carries 20 marks)

- 1. State and prove Jacobson's density theorem on semi simple R- modules.
- 2. Prove the structure theorem for semi simple Rings.
- 3. i) Prove that an exact functor from \mathcal{T} to \mathcal{D} transforms every exact sequence in \mathcal{T} to an exact sequence in \mathcal{D} .
 - ii) Define Projective module and free module. Prove that every free module is projective.
- 4. i) State and prove Schanuel's lemma.
 - ii) State and prove the equivalent conditions for a module to be projective.
- 5. a) Define Injective module and give an example.
 - b) State and prove Baer's Theorem.
 - c) Prove that every Z-module can be embedded in an injective Z-module.
- 6. a) Prove that every finitely generated projective A-module P is finitely presented.
 - b) Prove that every projective module of rank n over a semi-local ring is free of rank n.
- 7. State and prove Wedderburn's Structure theorem on semi-simple R algebras
- 8. i) Define a fuzzy set and a fuzzy subgroup.
 - ii) Prove that μ is a fuzzy subgroup of G if and only if μ_a is a subgroup of G.
 - iii) Define a normal fuzzy subgroup . If $\mu \in N(F(G))$ and $\vartheta \in F(G)$, prove that $\mu \cap \vartheta$ is a normal fuzzy subgroup of ϑ .