# STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2011-12 \& thereafter) 

SUBJECT CODE: 11CH/MC/GC14

## B.Sc. DEGREE EXAMINATION, NOVEMBER 2014 BRANCH IV- CHEMISTRY FIRST SEMESTER

```
COURSE : MAJOR CORE
PAPER : GENERAL CHEMISTRY I
TIME : 30 MINUTES
```


## Section- A <br> Answer all questions

Choose the correct answer:
(30×1=30)

1. The de Broglie wavelength of an electron is given as
a) $\lambda=E / m v$
b) $\lambda=\mathrm{h} / \mathrm{mv}$
c) $\lambda=m v / \mathrm{h}$
d) $\lambda=E$
2. Wave nature of electron is understood from
a) Compton effect
b) Davisson-Germer experiment
c) Photoelectric effect
d) Rutherford model
3. If $\mathrm{n}=2$, azimuthal quantum number can have values
a) $1=-1, o+1$
b) $1=-2,-1,0,+1,+2$
c) $1=0,1,2$
d) none of the above
4. Shape of orbitals are derived from
a) Principal quantum number
b) azimuthal quantum number
c) magnetic quantum number
d) spin quantum number
5. Two nuclei having the same number of neutrons but different mass number are called
a) isobars
b) isotopes
c) isotones
d) isomers
6. Artificial radioactivity was discovered by
a) Becquerel
b) Rutherford
c) Marie Curie
d) P.Villard
7. One of the following is an aprotic solvent
a) $\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{NH}_{3}$
c) DMSO
d) Acetic acid
8. Hyper conjugation is present in
a) Benzene
b) Naphthalene
c) methane
d) toluene
9. The hybridization of carbocation is
a) $\mathrm{sp}^{2}$
b) sp
c) $\mathrm{dsp}^{2}$
d) $\mathrm{sp}^{3}$
10. The number of optically active isomers of tartaric acid are
a) 1
b) 2
c) 3
d) 4

## Fill up the blanks:

11. Balmer series lies in the $\qquad$ region of electromagnetic spectrum.
12. If $\psi$ is the wave function of a particle, $\qquad$ represents the probability of finding the particle.
13. The number of nodes present in 2 s orbital is $\qquad$
14. The radiation with highest penetrating power is $\qquad$
15. In the Neptunium series the disintegration continues till $\qquad$ is obtained.
16. Magnesium occur as $\qquad$ rather than sulphide.
17. The most stable conformation of n-butane is $\qquad$ .
18. The conjugate base of $\mathrm{H}^{+}$in $\mathrm{H}_{2} \mathrm{CO}_{3}$ is $\qquad$ .
19. The number of neutrons present in ${ }_{92} \mathrm{U}^{232}$ is $\qquad$ .
20. Phenol is acidic because phenoxide ion is stabilized by $\qquad$ .

## Match the following:

| 21. Pauli exclusion principle | $\mathrm{n} / \mathrm{p}$ ratio $=1$ |
| :--- | :--- |
| 22. Bohr's first orbit | geometric isomer |
| 23. $\mathrm{C}^{12}$ | optical isomerism |
| 24. Maleic acid | spin pairing |
| 25. Biphenyls | $0.529 \mathrm{~A}^{\circ}$ |

## Answer in one or two sentences:

26. State Heisenberg's Uncertainty principle.
27. What is Zeeman effect?
28. Give an example for nuclear fusion.
29. What are the different types solvents?
30. State Huckel's rule of Aromaticity.

# STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2011-12 \& thereafter) 

SUBJECT CODE: 11CH/MC/GC14

## B.Sc. DEGREE EXAMINATION, NOVEMBER 2014 BRANCH IV- CHEMISTRY <br> FIRST SEMESTER

COURSE : MAJOR CORE
PAPER : GENERAL CHEMISTRY I
TIME : $\mathbf{2 ¹}^{1 ⁄ 2}$ MINUTES
MAX.MARKS : 70

## Section B

## Answer any five questions:

 $(5 \times 6=30)$.1. Explain photoelectric effect on the basis of quantum theory.
2. What are Laplacian and Hamiltonian operators?
3. Discuss the various modes of decay of a radioactive element
4. Explain Yukawa or Meson theory of nuclear forces.
5. Arrange he following in the order of increasing acidity
$\mathrm{HF}, \mathrm{HCl}, \mathrm{HI}, \mathrm{HBr}$ and justify your answer.
6. Write about the formation, structure and stability of carbanions.
7. Discuss with diagram the stability of various conformations of cyclohexane.

## Section C

Answer any two questions:
$(2 \times 20=40)$.
8. a) Discuss H-spectra on the basis of Bohr's model of atom.
b) Plot the Radial probability function for $1 \mathrm{~s}, 2 \mathrm{~s}$ and 2 p orbitals
c) How will you account for the electronic configuration of chromium (Cr) the $3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$ and copper $(\mathrm{Cu}) 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
9. a) Illustrate with example Soddy-Fajan's group displacement law
b) Give a detailed account of the applications of radio -isotopes in medicine and in studying reaction mechanism
c) Write a note on Artificial transmutation of elements.
10. a) Discuss any two applications of HSAB theory
b) Write about the dissolution of alkali metals in liquid ammonia
c) Assign $R$ and $S$ configuration for the following.
i)

iii)

ii)



