STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2009 – 10 & thereafter)

SUBJECT CODE : MT/PE/TS33 M. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE: ELECTIVEPAPER: TENSOR ANALYSIS AND SPECIAL THEORY OF RELATIVITYTIME: 3 HOURSMAX. MARKS : 100

$\begin{array}{c} \text{SECTION} - \text{A} \\ \text{ANSWER ANY FIVE QUESTIONS} \end{array} (5 X 8 = 40) \end{array}$

- 1. A covariant tensor has components xy, $zy z^2$, xz in rectangular coordinates. Find its covariant components in spherical coordinates.
- 2. Show that any inner product of the tensors A_r^p and B_t^{qs} is a tensor of rank three.
- 3. Find the covariant derivative of $A_k^j B_n^{lm}$ with respect to x^q .
- 4. Express the divergence of a vector A^p interms of its physical components for cylindrical coordinates.
- 5. Explain Longitudinal Contraction in Lorentz transformation.
- 6. Explain Proper Time and Proper Distance.
- 7. Obtain addition of velocities in Lorentz transformation.

$SECTION - B \qquad (3 X 20 = 60)$ ANSWER ANY THREE QUESTIONS

- 8. Derive transformation laws for the Christoffel symbols of
 - (a) the first kind (b) the second kind

9. a) Prove that a necessary condition that $I = \int_{t_1}^{t_2} F(t_1 x_1 \dot{x}) dt$ be an extremum

[maximum or minimum] is that $\frac{\partial F}{\partial x} - \frac{d}{dt} \left[\frac{\partial F}{\partial \dot{x}} \right] = 0.$

b) Show that the geodesic in Riemannian space are given by $\frac{d^2x^r}{ds^2} + {r \\ pq} \frac{dx^p}{ds} \frac{dx^q}{ds} = 0.$

- 10. Obtain the covariant derivative of A_p and A^p with respect to x^q .
- 11. Obtain Lorentz Transformation Equations.
- 12. a) Explain Galilean transformation
 - b) Explain Time dilation