STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2009-10 \& thereafter)

SUBJECT CODE: MT/PC/PD34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	:
PORE	
PAPER	$:$
TIME	$:$
PARTIAL DIFFERENTIAL EQUATIONS	

MAX. MARKS : 100

SECTION - A
 $(5 \times 8=40)$
 ANSWER ANY FIVE QUESTIONS

1. Form the PDE by eliminating the arbitrary function
(i) $Z=f(x+i b)+g(x-i b)$ where $i=\sqrt{-1}$
(ii) $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
2. Use Jacobi's method to solve $p^{2} x+q^{2} y=8$.
3. If f and g be arbitrary functions of their respective arguments. Show that
$u=f(x-v t+i y)+g(x-v t-i \alpha y)$ is a solution of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ provided $\alpha^{2}=1-\frac{v^{2}}{c^{2}}$.
4. Solve the equation $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{3} \partial y}-\frac{\partial^{3} y}{\partial x \partial y^{2}}+2 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+y}$.
5. Find the solution of Interior Neumann problem for a circle.
6. State and prove uniqueness theorem on heat conduction equation.
7. Derive the one dimensional wave equation.

SECTION - B
 ANSWER ANY THREE QUESTIONS

($\mathbf{3} \times 20=60$)
8. (a) Show that the following PDES $x p-y q=x$ and $x^{2} p+q=x z$ are compatible and hence find their solution.
(b) Find the complete integral of $x^{2} p^{2}+y^{2} q^{2}-4=0$ using charpit's method.
9. (a) Find the solution of the equation $\nabla_{1}^{2} z=e^{-x} \cos y$ which tends to zero as $x \rightarrow \infty$ and has the value cosy when $x=0$.
(b) Reduce the Tricomi equation, $u_{x x}+x u_{y y}=0, x \neq 0$ for all x, y to canonical form.
10. (a) Derive Poisson equation.
(b) Find the solution of interior Dirichlet problem for a circle.
11. (a) Find the solution of the one-dimensional diffusion equation satisfying the boundary conditions.
(i) T is bounded as $t \rightarrow \infty$
(ii) $\left.\frac{\partial T}{\partial x}\right|_{x=0}=0$, for all t
(iii) $\left.\frac{\partial T}{\partial x}\right|_{x=a}=0$ for all t
(iv) $T(x, 0)=x(a-x), 0<x<a$.
(b) State and prove the maximum-minimum principle.
12. (a) State and prove D'Alemberts solution of one-dimensional wave equation.
(b) By separating variables, show that one dimensional wave equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ has a solution of the form $A \exp (\pm$ inx \pm inct $)$, where A and n are constants. Hence show that functions of the form
$z(x, t)=\sum_{r}\left(A_{r} \cos \frac{r \pi c t}{a}+B_{r} \sin \frac{r \pi c t}{a}\right) \sin \left(\frac{r \pi x}{a}\right)$ where $A r$'s and $B r$'s are constants, satisfy the wave equation and the boundary conditions $z(0, t)=0, z(a, t)=0, \forall t$.

AAAAAAAAAA

