STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2009 – 10 & thereafter)

SUBJECT CODE: MT/PC/MS34 M. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: CORE	
PAPER	: MATHEMATICAL STATISTICS	
TIME	: 3 HOURS	MAX. MARKS : 100
	SECTIO	ON - A (5 X 8 = 40)

ANSWER ANY FIVE QUESTIONS

- 1. Find the characteristic function of a normal distribution and hence obtain its mean and variance.
- 2. Prove that *X* has a one-point distribution if and only if its variance is zero.
- 3. Let $F_n(x)$ (n = 1, 2, ...) be distribution function of the random variable X_n . Prove the necessary and sufficient condition for the stochastic convergence of the sequence $\{X_n\}$.
- 4. State and prove Poisson law of large numbers.
- 5. Define chi-square distribution. Derive the distribution function. Write its mean and variance.
- 6. Prove that S^2 is not unbiased estimator of variance σ^2 of random variable X and S_1^2 is an unbiased estimator of σ^2 .
- 7. If a random variable has Poisson distribution with unknown parameter λ find the estimate of λ using method of maximum likelihood.

$\begin{array}{l} \text{SECTION} - B & (3 \text{ X } 20 = 60) \\ \text{ANSWER ANY THREE QUESTIONS} \end{array}$

8. a) If X_1 and X_2 are independent Poisson random variables, find the characteristic function of $X_1 - X_2$.

b) If the characteristic function of the random variable is $\varphi(t) = \exp\left(\frac{-t^2}{2}\right)$. Find its density function.

- 9. Define Cauchy distribution. Obtain its characteristic function. Also check the validity of addition theorem for Cauchy random variable.
- 10. State and prove Levy-Cramer Theorem.
- 11. Derive Fisher's Z distribution.
- 12. State and prove Cramer-Rao inequality.