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SECTION – A              ( 5 X 8 = 40 ) 

                                            ANSWER ANY FIVE QUESTIONS 

1. If the stress sensor 
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, determine the constants a,b,c so that the    

   stress vector on the octahedral plane 
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 vanishes. 

2. Determine the principal deviator stress values for the stress tensor  
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3. The displacement field of continuum body is given by �� � ��,  �� � �� � 	�
,  
�
 � �
 � 	�� , where A is constant. Determine the displacement vector components 

in both the material and spatial form. 

4. A velocity field is given by 31 2
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            displacement relations    ( , )
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x x X t= and determine the acceleration components in  

            Lagrangian form for the motion. 

 

5. For the steady velocity field � � 3�����
̂� � 2����

̂� � 3�����
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̂
, determine 

the rate of   extension at ( )1,1,1P in the direction of � � �
� �3
̂� � 4
̂
�.       

6. (a)  Show that the velocity field 3 2/  where x xi i i iv Ax r r= =  and A is an arbitary 

                   constant , satisfies the continuity equation for an incompressible flow. 

            (b)  For the velocity field
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7. Express the engineering constantsν  and E in terms of the Lame’ constants   and λ µ .  
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SECTION – B              ( 3 X 20 = 60 ) 

ANSWER ANY THREE QUESTIONS 
             

8. (a)  Establish the relation between the stress tensor and the stress vector. 

            (b)  Evaluate the stress invariants for the stress tensor  
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9. (a)  A displacement field is given by � ���

�
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 . Determine 

                  independently the material deformation gradient F and the material displacement  

                  gradient  J and verify J=F-I. 

            (b)  A continuum body undergoes the deformation  

                  1 1 2 2 3 3 3 2, ,x X x X AX x X AX= = + = + where A is constant . Compute the   

                   deformation tensor G and use this to determine the Lagrangian finite strain  

                   tensor ��. 

 

10. (a)  A displacement field is specified by � � ��
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̂
.  

                   Determine the relative displacement vector �� in the direction of the  2X−  axis at  

                ( )1, 2, 1P − .Detemine the relative displacements    

                   ��� � ��  for ���1,1, �1�, ���1, 3 2 , �1�, �
�1, 7 4 , �1� and  �"#1, 15 8 , �1& 

                  and compare their direction with the direction of ��. 

            (b)  Explain the terms: Material derivative , Local rate of change ,convective rate of  

                   change  and Material derivative operator. 

 

11. (a) A steady velocity field is given by �' � ���
 � ������
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̂� .       

      Determine the  unit relative velocity with respect to ( )1,1,3P of the particles  at     

      ( )1 2 3
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           (b) Using linear momentum principle, obtain the equations of motion of a moving  

                 continuum. 

 

 

12. Obtain the generalised Hooke’s law for an isotropic body in terms of the elastic  

             constants   andλ µ .Show that the strain energy density function 
*u  for an isotropic  

             Hookean solid may be expressed in terms of the strain tensor by 
*

2
ii jj ij ij

u
λ

ε ε µε ε= + . 

 

 
���������������������������������������� 

 

 

 



 

 

 

 

 

 

 

 

 


