STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2009-10 \& thereafter)

SUBJECT CODE : MT/PC/CM34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : CORE
PAPER : CONTINUUM MECHANICS
TIME : 3 HOURS
MAX. MARKS : 100
SECTION - A
$(5 \times 8=40)$ ANSWER ANY FIVE QUESTIONS

1. If the stress sensor $\sigma_{i j}=\left(\begin{array}{c}\sigma \mathrm{a} \sigma \mathrm{b} \sigma \\ \mathrm{a} \sigma \mathrm{c} \sigma \\ \mathrm{b} \sigma \mathrm{c} \sigma \\ \mathrm{c} \sigma\end{array}\right)$, determine the constants a,b,c so that the stress vector on the octahedral plane $\left(\hat{n}=\frac{1}{\sqrt{3}} \hat{e}_{1}+\frac{1}{\sqrt{3}} \hat{e}_{2}+\frac{1}{\sqrt{3}} \hat{e}_{3}\right)$ vanishes.
2. Determine the principal deviator stress values for the stress tensor

$$
\sigma_{i j}=\left(\begin{array}{ccc}
10 & -6 & 0 \\
-6 & 10 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

3. The displacement field of continuum body is given by $x_{1}=X_{1}, x_{2}=X_{2}+A X_{3}$, $x_{3}=x_{3}+A X_{2}$, where A is constant. Determine the displacement vector components in both the material and spatial form.
4. A velocity field is given by $v_{1}=x_{1} /(1+t), v_{2}=2 x_{2} /(1+t), v_{3}=3 x_{3} /(1+t)$. Obtain the displacement relations $\quad x_{i}=x_{i}(X, t)$ and determine the acceleration components in Lagrangian form for the motion.
5. For the steady velocity field $v=3 x_{1}{ }^{2} x_{2} \hat{e}_{1}+2 x_{2}{ }^{2} x_{3} \hat{e}_{2}+3 x_{1} x_{2} x_{3}{ }^{2} x_{2} \hat{e}_{3}$, determine the rate of extension at $P(1,1,1)$ in the direction of $v=\frac{1}{5}\left(3 \hat{e}_{1}-4 \hat{e}_{3}\right)$.
6. (a) Show that the velocity field $v_{i}=A x_{i} / r^{3}$ where $\mathrm{x}_{i} \mathrm{x}_{i}=r^{2}$ and A is an arbitary constant, satisfies the continuity equation for an incompressible flow.
(b) For the velocity field $v_{i}=x_{i} /(1+t)$ show that $\rho x_{1} x_{2} x_{3}=\rho_{0} X_{1} X_{2} X_{3}$.
7. Express the engineering constants v and E in terms of the Lame' constants λ and μ.

SECTION - B
 ANSWER ANY THREE QUESTIONS

($\mathbf{3} \times 20=60$)
8. (a) Establish the relation between the stress tensor and the stress vector.
(b) Evaluate the stress invariants for the stress tensor $\sigma_{i j}=\left(\begin{array}{ccc}6 & -3 & 0 \\ -3 & 6 & 0 \\ 0 & 0 & 8\end{array}\right)$.
9. (a) A displacement field is given by $=X_{1} X_{3}{ }^{2} \hat{e}_{1}+X_{1}{ }^{2} X_{2} \hat{e}_{2}+X_{2}{ }^{2} X_{3} \hat{e}_{3}$. Determine independently the material deformation gradient \mathbf{F} and the material displacement gradient \mathbf{J} and verify $\mathbf{J}=\mathbf{F}-\mathbf{I}$.
(b) A continuum body undergoes the deformation $x_{1}=X_{1}, x_{2}=X_{2}+A X_{3}, x_{3}=X_{3}+A X_{2}$ where A is constant. Compute the deformation tensor \mathbf{G} and use this to determine the Lagrangian finite strain tensor $\boldsymbol{L}_{\boldsymbol{G}}$.
10. (a) A displacement field is specified by $\boldsymbol{u}=X_{1}^{2} X_{2} \hat{e}_{1}+\left(X_{2}-X_{3}{ }^{2}\right) \hat{e}_{2}+X_{2}{ }^{2} X_{3} \hat{e}_{3}$.

Determine the relative displacement vector $d \boldsymbol{u}$ in the direction of the $-X_{2}$ axis at $P(1,2,-1)$.Detemine the relative displacements
$\boldsymbol{u}_{q_{i}}-\boldsymbol{u}_{p}$ for $Q_{1}(1,1,-1), Q_{2}(1,3 / 2,-1), Q_{3}(1,7 / 4,-1)$ and $Q_{4}\left(1,15 /{ }_{8},-1\right)$ and compare their direction with the direction of $d \boldsymbol{u}$.
(b) Explain the terms: Material derivative, Local rate of change ,convective rate of change and Material derivative operator.
11. (a) A steady velocity field is given by $\vec{v}=\left(x_{1}{ }^{3}-x_{1} x_{2}{ }^{2}\right) \hat{e}_{1}+\left(x_{1}{ }^{2} x_{2}-x_{2}\right) \hat{e}_{2}$. Determine the unit relative velocity with respect to $P(1,1,3)$ of the particles at $Q_{1}(1,0,3), Q_{2}\left(1, \frac{3}{4}, 3\right), Q_{3}\left(1, \frac{7}{8}, 3\right)$.
(b) Using linear momentum principle, obtain the equations of motion of a moving continuum.
12. Obtain the generalised Hooke's law for an isotropic body in terms of the elastic constants λ and μ.Show that the strain energy density function u^{*} for an isotropic Hookean solid may be expressed in terms of the strain tensor by $u^{*}=\frac{\lambda}{2} \varepsilon_{i i} \varepsilon_{i j}+\mu \varepsilon_{i j} \varepsilon_{i j}$.

ALAAAALAAA

