STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2009 – 10 & thereafter)

SUBJECT CODE: MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	:	CORE		
PAPER	:	COMPLEX ANALYSIS		
TIME	:	3 HOURS	MAX. MARKS :	100

$SECTION - A \qquad (5 X 8 = 40)$

ANSWER ANY FIVE QUESTIONS

- 1. If u_1 and u_2 are harmonic in a region Ω , then prove that $\int_r u_1 * du_2 u_2 * du_1 = 0$ for every cycle γ which is homologous to zero in Ω .
- 2. Represent $\sin \pi z$ in the form of a canonical product.
- 3. If $\sigma = Re(s) > 1$ and $\{p_n\}$ is an ascending sequence of primes, prove that

$$\frac{1}{\varsigma(s)} = \prod_{n=1}^{\infty} (1 - p_n^{-s}).$$

4. Prove that
$$\varsigma(s)\Gamma(s) = \int_0^\infty \frac{x^{s-1}}{e^{x-1}} dx$$

- Prove that the family F is totally bounded if and only if to every compact set E ⊂ Ω and every ε > 0 it is possible to find f₁, f₂, ..., f_n ∈ F such that every f ∈ F satisfies d(f_i, f_j) < ε on E for some f_j.
- 6. Prove that the functions z = F(w) which map |w| < 1 conformally onto polygons with angles α_kπ(k = 1,2,...n) are of the form
 F(w) = C ∫₀[∞] Πⁿ_{k=1}(w w_k)^{-β_k}dw + C', where β_k = 1 α_k, w_k are points on the

unit circle and C, C' are complex constants.

7. Prove that a discrete module consists either of zero alone, of the integral multiples $n\omega$ of a single complex number $\omega \neq 0$, or of all linear combinations $n_1\omega_1 + n_2\omega_2$ with integral co-efficients of two numbers ω_1, ω_2 with non-real ratio $\frac{\omega_2}{\omega_1}$.

(3 X 20 = 60)

SECTION – B

ANSWER ANY THREE QUESTIONS

- 8. a) Suppose that u(z) is harmonic for |z| < R, continuous for $|z| \le R$, prove that $u(a) = \frac{1}{2\pi} \int_{|z|=R} \frac{R^2 - |a|^2}{|z-a|^2} u(z) d\theta$ for all |a| < R.
 - b) State and prove Jensen's formula.
- 9. a) Prove that $\varsigma(x) = 2^s \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \varsigma(1-s)$. Using this result derive the Legendre's duplication formula.
 - b) Show that the function $\xi(s) = \frac{1}{2}s(1-s)\pi^{-s/2}\Gamma(s/2)\zeta(s)$ is entire satisfying $\xi(s) = \xi(1-s)$ and derive the Legendre's duplication formula. (10+10)
- 10. State and prove Arzela-Ascoli theorem.
- 11. State and prove Riemann mapping theorem.
- 12. a) Prove that the zeros $a_1, a_2, ..., a_n$ and the poles $b_1, b_2, ..., b_n$ of an elliptic function f satisfy $a_1 + a_2 + \cdots + a_n \equiv b_1 + b_2 + \cdots + b_n \pmod{M}$, M being the period module of f.

b) Prove that
$$\mathcal{P}(z+u) = -\mathcal{P}(z) - \mathcal{P}(u) + \frac{1}{4} \left(\frac{\mathcal{P}'(z) - \mathcal{P}'(u)}{\mathcal{P}(z) - \mathcal{P}(u)}\right)^2$$
. (10+10)
