STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011 – 12)

SUBJECT CODE : 11MT/PE/NC14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	ELECTIVE		
PAPER	:	NUMBER THEORY AND CRYPTOGRAPH	Y	
TIME	:	3 HOURS	MAX. MARKS :	100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

- 1. Multiply 160 and 199 in the base 7.
- 2. If gcd(a, m) = 1, prove that $ax \equiv 1 \pmod{m}$ has a solution.
- 3. Prove that Legendre symbol $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
- 4. Find the inverse of $\begin{pmatrix} 1 & 4 \\ 5 & 7 \end{pmatrix}$ mod 9.
- 5. What is a trap-door function?

SECTION – B

ANSWER ANY FIVE QUESTIONS:

$(5 \times 6 = 30)$

- 6. Estimate the time required to convert *a k*-bit integer *n* to its representation to the base *b*.
- 7. If gcd(a, m) = 1, prove that $a^{\varphi(m)} \equiv 1 \pmod{m}$.
- 8. Factor $3^{12} 1 = 531440$.
- 9. If $\alpha \in F_q$, prove that conjugates of \propto over F_p are the elements $\sigma^j(\alpha) = \alpha^{p^j}$.

10. Prove that
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1 \text{ if } p \equiv \pm 1 \pmod{8} \\ -1 \text{ if } p \equiv \pm 3 \pmod{8} \end{cases}$$

11. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(Z/NZ)$, and set D = (ad - bc). Prove that the following are equivalent.

(a) gcd(D, N) = 1

- (b) *A* has an inverse matrix
- (c) A gives a 1 to 1 correspondence of $(Z/NZ)^2$ with itself.
- (d) If x and y are not both 0 in (Z/NZ), then $A\begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- 12. Describe a Public Key Cryptosystem. What are its advantages over Classical Cryptosystems?

 $(3 \times 20 = 60)$

SECTION – C

ANSWER ANY THREE QUESTIONS :

- 13. a) Describe the Euclidean algorithm . If a > b, prove that Time (finding gcd(a, b) by the Euclidean Algorithm) = $0(log^3a)$.
 - b) Find g.c.d. $(x^4 4x^3 + 6x^2 4x + 1, x^3 x^2 + x 1)$. Also find polynomials u(x) and v(x) such that gcd = u(x)f(x) + v(x)g(x). (12+8)
- 14. a) Stare and prove the Chinese Remainder theorem. Deduce that the Euler Phi function is multiplicative.
 - b) Compute $2^{10,00,000} \mod 77$. (12+8)
- 15. a) Prove that every finite field has a generator. If g is a generator of F_q^* , prove that g^j is also a generator iff gcd(j, q 1) = 1. Prove that there are $\varphi(q 1)$ different generators of F_q^* .
 - b) Determine whether 7411 is a residue module the prime 9283. (12+8)
- 16. You intercept the message "ZRIXXYVBMNPO", which you know resulted from a linear enciphering transformation of digraph-vectors in a 27-letter alphabet, in which A Z have numerical equivalents 0 25, blank = 26. You have found that the most frequently occurring ciphertext digraphs are "PK" and "RZ". You guess that they correspond to the most frequently occurring plaintext digraphs in the 27-letter alphabet, namely, "E" (E followed by blank" and "S" (S followed by blank). find the deciphering matrix, and read the message.
- 17. a) Describe the RSA Cryptosystem with an example.b) Explain how signature is sent in RSA.

(12+8)

##