STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011 – 12)

SUBJECT CODE : 11MT/PC/RA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	CORE
PAPER	:	REAL ANALYSIS
TIME	:	3 HOURS

MAX. MARKS: 100

(5 X 2 = 10)

SECTION – A ANSWER ALL QUESTIONS

- 1. Define (i) an interior point (ii) a metric space
- 2. Define (i) Cesaro Summability of a series (ii) infinite product
- 3. Justify the statement "the operations of limit and integration cannot always be interchanged" with a suitable example.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by the equation

f(x, y) = (sinxcosy, sinxsiny, cosxcosy), determine the Jacobian matrix Df(x, y).

5. Find and classify the extreme values of the function $f(x, y) = y^2 - x^3$.

$SECTION - B \qquad (5 X 6 = 30)$ ANSWER ANY FIVE QUESTIONS

6. Prove that (i) The union of any collection of open sets is an open set.

(ii) The intersection of a finite collection of open sets is open.

- 7. Assume that each $a_n \ge 0$, the prove that the product $\prod (1 a_n)$ converges if and only if $\sum a_n$ converges.
- 8. State and prove the Cauchy condition for uniform convergence of sequence of functions.
- State and prove the chain rule to compute the total derivative of *h* in terms of total derivative of *f* and of *g*.
- 10. State and prove the Mean-value theorem for differentiable functions on \mathbb{R}^n .
- 11. Assume that $f = (f_1, f_2, ..., f_n)$ has continuous partial derivatives $D_j f_i$ on an open set *S* in \mathbb{R}^n , and that the Jacobian determinant $J_f(a) \neq 0$ for some point a in *S*, the prove that there is an n-ball B(a) on which f is one-to-one.
- 12. State and prove the second derivative test for extrema.

..2

(3 X 20 = 60)

SECTION – C ANSWER ANY THREE QUESTIONS

- 13. a) State and prove the Cantor intersection theorem.
 - b) Let *S* be a subset of \mathbb{R}^n , then show that the following three statements are equivalent :
 - (i) S is compact
 - (ii) *S* is closed and bounded
 - (iii) Every infinite subset of S has an accumulation point in S.
- 14. a) State and prove the Rearrangement theorem for double series.
 - b) Determine whether the infinite product $\prod_{n=2}^{\infty} \frac{n^3 1}{n^3 + 1}$ converges or not.
- 15. a) Assume that $f_n \to f$ uniformly on $S \subseteq \mathbb{R}^1$. If each f_n is continuous at a point *c* of *S* then

show that the limit function f is also continuous at c.

- b) State and prove Bernstein's theorem.
- 16. a) Justify the statement that "a function can have a finite directional derivative f'(c, u) for every u but may fail to be continuous at c" with a suitable example.
 - b) If both partial derivatives $D_r f$ and $D_k f$ exist in an n-ball $B(c; \delta)$ and if both are differentiable at *c*, then prove that $D_{r,k} f(c) = D_{k,r} f(c)$.
- 17. State and prove the implicit function theorem.

.....