STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2011-12)
SUBJECT CODE : 11MT/PC/OD14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ CORE	
PAPER	$:$ ORDINARY DIFFERENTIAL EQUATIONS	
TIME	$: 3$ HOURS	
MAX. MARKS : 100		

SECTION - A

ANSWER ALL THE QUESTIONS:

1. Define linear dependence and independence.
2. Solve $x^{\prime \prime \prime}+3 x^{\prime \prime}+3 x^{\prime}+x=0$.
3. Define an analytic function.
4. Show that $J_{0}{ }^{\prime}(x)=-J_{1}(x)$.
5. Define Green's function.

SECTION - B

ANSWER ANY FIVE QUESTIONS:
6. Solve $x^{\prime \prime}-\frac{2}{t} x^{\prime}+\frac{2}{t^{2}} x=t \operatorname{sint}, t \in[1, \infty)$ using the method of variation of parameters.
7. Compute the wronskian of $e^{x}, e^{2 x}$ and 1.
8. Consider the equation $x^{\prime \prime \prime}-4 x^{\prime}=0$.
(a) compute three linearly independent solution
(b) Find the solution when $\left.x(0)=0, x^{\prime}(0)=1 \& x^{\prime \prime} 0\right)=0$.
9. Consider the equation $y^{\prime \prime}+y=0$ find its general solution
$y=\Sigma a_{n} x^{n}$ in the form $y=a_{0} y_{1}(x)+a_{1} y_{2}(x)$ where $y_{1}(x) \& y_{2}(x)$ are power series.
10. If $P_{m}(t)$ and $P_{n}(t)$ are Legendre polynomials then prove that
$\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 \quad(m \neq n)$
11. Show that $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
12. State and prove Picard's Boundary Value theorem.

SECTION - C

ANSWER ANY THREE QUESTIONS :
($\mathbf{3 \times 2 0}=\mathbf{6 0}$)
13. (a) Let $x_{1}(t), x_{2}(t), \ldots ., x_{n}(t)$ be linearly independent solution of $L(x)=0$ on the interval I , then any solution of $x(t)$ of $L(x)=0$ on I is of the form $x(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)+\ldots \ldots+C_{n} x_{n}(t), t \in I$ where $C_{1}, C_{2}, \ldots \ldots, C_{n}$ are some constants.
(b) Solve $t^{2} x^{\prime \prime}-2 x=2 t-1$.
14. (a) State and prove Abel's formula.
(b) Find the general solution of the non-homogeneous IVP given by $L(y)=d(t), y\left(t_{0}\right)=y^{\prime}\left(t_{0}\right)=0 t, t_{0} \in I$
15. Show that $Z(t)=\sum_{k-0}^{\infty} a_{k} t^{k}$ is a solution of Hermite equation $x^{\prime \prime}-2 t x^{\prime}+2 x=0$.
16. (a) If P_{n} is a Legendre polynomial then prove that $\int_{-1}^{1} P_{n}{ }^{2}(t) d t=\frac{2}{2 n+1}$
(b) Show that the Bessel function of the first kind of order ' p ' denoted by $J_{p}(x)$ is $J_{p}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p}}{n!(p+n)!}$.
17. (a) Show that the null solution of equation $x^{\prime}=A(t) x$ is stable iff a positive a constant k exists $\ni|\phi(t)| \leq k, t \geq t_{0}$.
(b) The null solution of the system $x=A(t) x$ is asymptotically stable iff $|\phi(t)| \rightarrow 0$ as $t \rightarrow \infty$.

