STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011 – 12)

SUBJECT CODE : 11MT/PC/OD14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE	:	CORE		
PAPER	:	ORDINARY DIFFERENTIAL EQUATIONS		
TIME	:	3 HOURS	MAX. MARKS :	100

SECTION - A

ANSWER ALL THE QUESTIONS:

 $(5 \times 2 = 10)$

 $(5 \times 6 = 30)$

- 1. Define linear dependence and independence.
- 2. Solve x''' + 3x'' + 3x' + x = 0.
- 3. Define an analytic function.
- 4. Show that $J_0'(x) = -J_1(x)$.
- 5. Define Green's function.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 6. Solve $x'' \frac{2}{t}x' + \frac{2}{t^2}x = tsint$, $t \in [1, \infty)$ using the method of variation of parameters.
- 7. Compute the wronskian of e^x , e^{2x} and 1.
- 8. Consider the equation x''' 4x' = 0.

(a) compute three linearly independent solution

(b) Find the solution when x(0) = 0, x'(0) = 1 & x''(0) = 0.

9. Consider the equation y'' + y = 0 find its general solution

$$y = \sum a_n x^n$$
 in the form $y = a_0 y_1(x) + a_1 y_2(x)$ where $y_1(x) \& y_2(x)$ are power series

10. If $P_m(t)$ and $P_n(t)$ are Legendre polynomials then prove that

$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0 \ (m \neq n)$$

- 11. Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$
- 12. State and prove Picard's Boundary Value theorem.

SECTION – C

ANSWER ANY THREE QUESTIONS :

 $(3 \times 20 = 60)$

- 13. (a) Let x₁(t), x₂(t),, xₙ(t) be linearly independent solution of L(x) = 0 on the interval I, then any solution of x(t) of L(x) = 0 on I is of the form
 x(t) = C₁x₁(t) + C₂x₂(t) + + Cₙxₙ(t), t ∈ I where C₁, C₂,....,Cₙ are some constants.
 - (b) Solve $t^2 x'' 2x = 2t 1$.
- 14. (a) State and prove Abel's formula.
 - (b) Find the general solution of the non-homogeneous IVP given by $L(y) = d(t), y(t_0) = y'(t_0) = 0 t, t_0 \in I$
- 15. Show that $Z(t) = \sum_{k=0}^{\infty} a_k t^k$ is a solution of Hermite equation x'' 2tx' + 2x = 0.
- 16. (a) If P_n is a Legendre polynomial then prove that $\int_{-1}^{1} P_n^2(t) dt = \frac{2}{2n+1}$
 - (b) Show that the Bessel function of the first kind of order 'p' denoted by

$$J_p(x)$$
 is $J_p(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \left(\frac{x}{2}\right)^{2n+p}}{n!(p+n)!}.$

- 17. (a) Show that the null solution of equation x' = A(t)x is stable iff a positive a constant $k = xists \exists |\phi(t)| \le k, t \ge t_0$.
 - (b) The null solution of the system x' = A(t)x is asymptotically stable iff $|\phi(t)| \rightarrow 0$ as $t \rightarrow \infty$.
