STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted during the academic year 2011-12)
SUBJECT CODE : 11MT/PC/MA14

M. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ CORE
PAPER	: MODERN ALGEBRA
TIME	$:$

SECTION - A

ANSWER ALL THE QUESTIONS:
($5 \times 2=10$)

1. Find the number of 11 -sylow subgroups in a group of order $11^{2} \cdot 13^{2}$.
2. Prove that any field is a Euclidean domain.
3. Prove that for any prime ' p ' the polynomial $x^{p-1}-+x^{p-2}+\cdots+x+1$ is irreducible over the field of rational numbers.
4. Prove or disprove: Any polynomial of degree ' n ' over a skew field can have at most ' n ' roots in that skew field.
5. Define a simple extension of a field and give an example.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. If G is the internal direct product of $N_{1}, N_{2}, \cdots, N_{n}$, then prove that $N_{i} \cap N_{j}=(e)$ for $i \neq j$, and if $a \in N_{i}, b \in N_{j}$ then $a b=b a$.
7. Let R be a Euclidean ring. Then prove that any two elements a, b in R have a greatest common divisor ' d ' and it is of the form $\lambda a+\mu b$.
8. State and prove the Eisenstein criterion about irreducibility of polynomials over the field of rationals.
9. Define the splitting field of a polynomial $f(x)$ over the field F and find the splitting field of the polynomial $x^{4}+x^{2}+1$ in $Q[x]$. Find also the degree of the splitting field over Q.
10. If K is a finite extension of F, then prove that $G(K, F)$ is a finite group and $o(G(K, F)) \leq[K: F]$.
11. Prove that the number of p-Sylow's subgroups of a finite group is $1+k p$.
12. If the rational number r is also an algebraic integer, prove that r must be an ordinary integer.

SECTION - C
 ANSWER ANY THREE QUESTIONS :
 ($\mathbf{3 \times 2 0}=\mathbf{6 0}$)

13. Prove that every finite abelian group is the direct product of cyclic groups.
14. (a) Define a Euclidean ring and prove that ring of Gaussian integers is a Euclidean ring.
(b) If p is a prime number of the form $4 n+1$, then prove that $p=a^{2}+b^{2}$, for some integers a and b.
15. Prove that the polynomial ring $F[x]$ is a Euclidean ring, proving the required results.
16. (a) Prove that an element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite extension of F.
(b) Define a simple extension. Is a simple extension a finite extension? Justify your answer.
17. State and prove the fundamental theorem of Galois Theory.
