STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2014 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE: COREPAPER: MEASURE THEORY AND INTEGRATIONTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

Answer all the questions:

- 1. Show that for any set A, $m^*(A) = m^*(A + x)$ where $A + x = \{y + x, y \in A\}$.
- 2. Show that if f is a non negative measurable function, then f = 0 a.e if $\int f dx = 0$.
- 3. Define (i) measure (ii) complete measure (iii) σ finite measure
- Define (i) signed measure (ii) positive set with respect to signed measure (iii) a negative set.
- 5. If \mathcal{Y} is any class of subset of X then show that there exists a smallest monotone class denoted by $\mathcal{M}_0(\mathcal{Y})$ containing.

SECTION – B

Answer any five questions:

- 6. Prove that for any sequence of sets $\{E_i\}m^*(\bigcup_{i=1}^{\infty}E_i) \leq \sum_{i=1}^{\infty}m^*(E_i)$.
- 7. State and prove Lebesgue Monotone Convergence Theorem.
- 8. Show that if $\alpha > 1$, $\int_0^1 \frac{x \sin x}{1 + (nx)^{\alpha}} dx = o(n^{-1})$ as $n \to \infty$.
- 9. Show that $L^{\infty}(\mu)$ is complete.
- 10. Prove that a countable union of sets positive with respect to a signed measure v is a positive set.
- 11. Prove: Let μ be a signed measure on [[X, δ]] and let v be of finite valued signed measure on [[X, δ]] such that v ≤ μ. Then given ε > 0 there exists a δ > 0 such that |v|(E) > ε whenever |v|(E) < δ.
- 12. Prove that the class of elementary sets ξ is an algebra.

..2

5×6=30

5×2=10

SECTION – C

Answer any three questions:

3×20=60

- 13. a) Prove that the class \mathcal{M} is a σ sigebra.
 - b) Prove that every interval is measurable.
- 14. a) Let ϕ and ψ be simple functions which vanish outside a set of finite measure, then prove that $\int (a\phi + b\psi) = a \int \phi + b \int \psi$ and if $\phi \ge \psi$ a.e. then $\int \phi \ge \int \psi$.
 - b) Let f be a non-negative measurable function. Then prove that there exists a sequence $\{\phi_n\}$ of measurable simple functions such that for each $x, \phi_n(x) \uparrow f(x)$.
- 15. a) If μ is a measure on a σ ring S, then prove that the class \overline{S} of sets of the form $E\Delta N$ for any sets E, N such that $E \in S$ while N is contained in some sets in S of zero measure is a σ ring, and the set function $\overline{\mu}$ defined by $\overline{\mu}(E\Delta N) = \mu(E)$ is a complete measure on \overline{S} .
 - b) Let [[X, S, μ]] be a measure space and f a non-negative measurable function. Then show that φ(E) = ∫_E f dμ is a measure on the measurable space [[X, S]]. Also prove: ∫ f dμ < ∞ then ∀ε > 0, ∃δ > 0 such that, if A ∈ S and μ(A) < δ, then φ(A) < ε.
- 16. a) If v be a signed measure on [[X, S]], then prove that there exists measures v⁺ and v⁻ on [[X, S]] such that v = v⁺ v⁻ and v⁺ perpendicular to v⁻. The measures v⁺ and v⁻ are uniquely defined by v, and v = v⁺ v⁻ called the Jordan decomposition of v.
 - b) Let f be a non-negative function and let φ(x) = ∫_Y f_x dv, ψ(y) = ∫_X f^y dµ, for each x ∈ X, y ∈ Y. Then prove that φ is S measurable ψ is τ measurable and ∫_X φdµ = ∫_{X×Y} fd(µ×v) = ∫_Y Ψdv.
- 17. a) If v_1 and v_2 are σ finite measures on $[[X, \delta]]$ and $v_1 \ll \mu$, $v_2 \ll \mu$, then prove that $\frac{d(v_1+v_2)}{d\mu} = \frac{dv_1}{d\mu} + \frac{dv_2}{d\mu} [\mu].$
 - b) State and prove Lebesgue Decomposition Theorem.