STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/PC/DG44

M. Sc. DEGREE EXAMINATION, APRIL 2014 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	: CORE
PAPER	: DIFFERENTIAL GEOMETRY
TIME	: 3 HOURS
	SECTION – A

MAX. MARKS: 100

ANSWER ALL QUESTIONS :

(5 X 2 = 10)

 $(5 \times 6 = 30)$

- 1. Define centre of curvature.
- 2. Define orientable surface.
- 3. Define an isometry.
- 4. Find the second fundamental form of the plane $\sigma(u, v) = a + up + vq$.
- 5. Define Gaussian and Mean curvature.

SECTION – B

ANSWER ANY FIVE QUESTIONS :

- 6. Define regular point and prove that any reparametrisation of a regular curve is regular.
- 7. Show that a parametrised curve has a unit-speed reparametrisation if and only if it is regular.
- 8. Show that the level surface $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, where *a*, *b* and *c* are non-zero constants, is a smooth surface.
- 9. Find the first fundamental form for $\sigma(u, v) = (sinhu sinhv, sinhu coshv, sinhu)$.
- 10. Prove that a diffeomorphism $f: S_1 \to S_2$ is an isometry if and only if, for any surface patch $\sigma_1 \text{ of } S_1$, the patches σ_1 and $f \circ \sigma_1$ of S_1 and S_2 , respectively, have the same first fundamental form.
- 11. State and prove Euler's theorem.
- 12. Find the Gaussian and mean curvature of the surface $\sigma(u, v) = (u + v, u v, uv)$ at the point (2, 0, 1).

121

11MT/PC/DG44

(10+10)

SECTION – C

ANSWER ANY THREE QUESTIONS :

(3 X 20 = 60)

13. (a) Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 . Prove that its curvature is

$$k = \frac{\|\ddot{r} \times \dot{r}\|}{\|\dot{r}\|^3}$$

where the \times indicates the vector (or) cross product and the dot denotes $\frac{d}{dt}$.

(b) Obtain the Frenet- serret equations.

- 14. Prove that the unit sphere and the double cone are surfaces.
- 15. Prove that a diffeomorphism $f: S_1 \to S_2$ is conformal if and only if, for any surface patch σ_1 on S_1 , the first fundamental forms of σ_1 and $f \circ \sigma_1$ proportional.
- 16. Let k_1 and k_2 be the principal curvatures at a point P of a surface patch σ . Then show that
 - (i) k_1 and k_2 are real numbers;
 - (ii) if $k_1 = k_2 = k$, say, then $\mathcal{F}_{II} = k\mathcal{F}_1$ and (hence) every tangent vector to σ at P is a principal vector;
 - (iii) if $k_1 \neq k_2$, then any two (non-zero) principal vectors t_1 and t_2 corresponding to k_1 and k_2 , respectively, are perpendicular.
- 17. State and prove Gauss's remarkable theorem.

.....