STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 86 (For candidates admitted during the academic year 2011 – 12 & thereafter)

SUBJECT CODE: 11EC/PE/EM44

M. A. DEGREE EXAMINATION, APRIL 2014 BRANCH III – ECONOMICS FOURTH SEMESTER

COURSE	: ELECTIVE	
PAPER	: ECONOMETRICS	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION – A

ANSWER ANY FIVE QUESTIONS. EACH ANSWER NOT TO EXCEED 300 WORDS.

(5 X 8 = 40)

- 1. Explain the methodology of Econometrics by using suitable illustration.
- Derive the OLS estimator β̂ vector for a Multiple Linear regression model Y = Xβ+U. Also derive the variance covariance matrix for β̂.
- 3. Why do we introduce the error term U in an econometric model? What are the assumptions related to the error term?
- 4. Construct and explain an ANOVA Dummy Variable model involving Gender discrimation, Rural urban variation in analyzing the health care expenditure.
- 5. Explain Goldfield –Quandt test to detect the present of Heteroscadasticity.
- 6. Bring out the methods of detect the problem of auto-correlation.
- 7. Write a short note on "Probit Model".

SECTION – B

ANSWER ANY THREE QUESTIONS. EACH ANSWER NOT TO EXCEED 1200 WORDS. (3 x 20 = 60)

- 8. Prove that ordinary least square estimates are best linear unbiased estimators.
- 9. Given the data

Yi	20	28	40	45	37	52	54	43	65	56
Xi	2	3	5	4	3	5	7	6	7	8

Estimate $Y_i = \alpha + \beta X_i + U_i$ using OLS method. Also test the significance by 't', 'F' and R² values.

11EC/PE/EM44

- 10. Define Multicollinearity. What are the consequences? How do we detect and solve the same?
- 11. Explain simultaneous equation bias using Keynesian Income determination model?
- 12. How does the Logit model become better than Linear probability model? Explain also the estimation process of Logit model for grouped data.
