STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE : MT/ME/OT54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE : MAJOR - ELECTIVE
 PAPER : OPTIMIZATION TECHNIQUES TIME : 3 HOURS

MAX. MARKS : 100

Answer Any Six Questions (each carrying 17marks)

1. Use the three point interval search to approximate the location of the maximum of $f(x)=x(5 \pi-x)$ on $[0,20]$ to with in $\varepsilon=1$.
2. Use the Newton- Raphson method to maximize : $z=-\left(x_{1}-\sqrt{5}\right)^{2}-\left(x_{2}-\pi\right)^{2}-10$ to with in a tolerance of 0.05 .
3. Solve the following program by use of the Kuhn-Tucker conditions:

Minimize $z=x_{1}^{2}+5 x_{2}^{2}+10 x_{3}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}-12 x_{2} x_{3}-2 x_{1}+10 x_{2}+5 x_{3}$
Subject to: $x_{1}+2 x_{2}+x_{3} \geq 4$ with all variables nonnegative
4. Use the penalty function approach to

Minimize $\mathrm{Z}=\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}-1\right)^{2}+1$
Subject to $x_{1}^{5}+x_{2}^{5}+x_{3}^{5}=16$
5. A presidential nominee has reduced the field of possible Vice Presidential running mates to three people. Each of these candidates has been rated on a scale from .1 (lowest) to 10 (highest) : person 1 received 10 points, person 2 received 8 points, and person3 received 5points. The probability of person i (i $=1,2,3$) accepting the $\mathrm{j}^{\text {th }} \quad(\mathrm{j}=1,2,3)$ offer to run for Vice President (assuming the first $\mathrm{j}-1$ offers, to other people, were declined) is denoted by

$$
\begin{aligned}
& P_{\mathrm{ij}} \text { where } \quad \mathrm{p}_{11}=0.5 \quad \mathrm{p}_{12}=0.2 \quad \mathrm{p}_{13}=0 \\
& \mathrm{p}_{21}=0.9 \mathrm{p}_{22}=0.5 \quad \mathrm{p}_{23}=0.2 \\
& \mathrm{p}_{31}=1 \quad \mathrm{p}_{32}=0.8 \quad \mathrm{p}_{33}=0.4
\end{aligned}
$$

In what order should the three potential running mates be offered the Vice Presidential Nomination if the presidential nominee wants to maximize the expected number of Points ?
6. Is the Stochastic matrix

$$
P=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.4 & 0 & 0.6 & 0 \\
0.2 & 0 & 0.1 & 0.7 \\
0 & 0 & 0 & 1
\end{array}\right|
$$

regular? Ergodic? Calculate $\mathrm{L}=\lim _{n \rightarrow \infty} P^{n}$, if it exist.
7. (a) Write a short notes on KENDALL'S NOTATION.
(b) A new television set arrive for inspection every 3 min and is taken by a quality control engineer on a first-come, first- served basis. There is only one engineer on duty, and it takes exactly 4 min to inspect each new set. Determine the average number of sets waiting to be inspected over the first half-hour of a shift, if there are no sets awaiting inspection at the beginning of the shift.
8. A gourmet delicatessen is operated by one person, the owner. The arrival pattern of customers on Saturdays appears to follow a Poisson distribution, with a mean arrival rate of 10 people per hour. Customers are served on a FIFO basis, and because of the reputation of the store they are willing to wait for service once they arrive. The time it takes to serve a customer is estimated to be exponentially distributed, with an average service time of 4 min . Determine (a) the probability that there is a queue, (b) the average size of the queue,(c) the expected time that a customer must wait in the queue, and (d) the probability that a customer will spend less than 12 min in the store.

AAAAAAAAA

