STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE: MT/MC/VA32

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE	: MAJOR - CORE
PAPER	$:$ VECTOR ANALYSIS
TIME	$: 11 / 2$ HOURS

MAX. MARKS : 100

SECTION - A
 ANSWER ANY TEN QUESTIONS

1. If $\vec{A}=5 t^{2} \hat{\imath}+t \hat{\jmath}-t^{3} \hat{k}$, find $\frac{d}{d t}(\vec{A} \cdot \vec{A})$.
2. Find the velocity and acceleration of a particle which moves along the curve $x=2 \sin t, y=2 \cos 3 t, z=8 t$ at any time $t>0$.
3. Define divergence and curl of a vector point function.
4. Prove that Gradient of a constant is zero.
5. If $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$, find $\nabla \phi$ at the point $(1,-2,-1)$
6. Show that $\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-2 x z+2 z) \hat{k}$ is solenoidal.
7. If $\vec{f}=\left(t-t^{2}\right) \hat{\imath}+2 t^{3} \hat{\jmath}-3 \hat{k}$, find $\int_{1}^{2} \vec{f}(t) d t$.
8. Show that $\vec{F}=x^{2} \hat{\imath}+y^{2} \hat{\jmath}+z^{2} \hat{k}$ is a conservative field.
9. Define surface integral of a vector point function.
10. State Gauss divergence theorem.
11. Show that $\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} d S=0$ where S is any closed surface.
12. Show that $\int_{C} \vec{r} \cdot \overrightarrow{d r}=0$, where C is a closed curve.

SECTION - B
 ANSWER ANY FOUR QUESTIONS

(4X20=80)
13. a) Find an equation for the tangent plane to the surface $z=x^{2}+y^{2}$ at the point ($1,-1,2$)
b) Find a unit tangent vector to any point on the curve $x=a \cos \omega t, y=a \sin \omega t, z=b t$ where a, b, ω are constants.
c) If \vec{A} and \vec{B} are differential functions of a scalar u, prove that

$$
\begin{equation*}
\frac{d}{d u}(\vec{A} \times \vec{B})=\vec{A} \times \frac{d \vec{B}}{d u}+\frac{d \vec{A}}{d u} \times \vec{B} \tag{6}
\end{equation*}
$$

14. a) Find the directional derivative of $\phi=x^{2} y z+4 x z^{2}$ at (1,-2,-1) in the direction $2 \vec{i}-\vec{j}-2 \vec{k}$. In which direction the directional derivative will be maximum and what is its magnitude. Also find a unit normal to the surface $x^{2} y z+4 x z^{2}=6$ at the point ($1,-2,-1$).
b) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=0$ and $z=x^{2}+y^{2}-3$ at the point (2,-1,2)
15. a) Prove: $\nabla \times(\nabla \times \vec{A})=-\nabla^{2} \vec{A}+\nabla(\nabla \cdot \vec{A})$
b) Prove that $\nabla^{2}\left(\frac{1}{r}\right)=0$
16. a) If $\vec{F}=\left(2 x^{2}+y^{2}\right) \hat{\imath}+(3 y-4 x) \hat{\jmath}$, evaluate $\int_{C} \vec{F} \cdot d r$ around the triangle ABC whose vertices are $\mathrm{A}(0,0) ; \mathrm{B}(2,0) ; \mathrm{C}(2,1)$.
b) Evaluate $\int_{V}(2 x+y) d V$ where V is the closed region bounded by the cylinder $z=4-x^{2}$ and the plane $x=0, y=0, y=2$ and $z=0$.
17. Verify Stoke's theorem for a vector field defined by $\vec{F}=\left(x^{2}-y^{2}\right) \hat{\imath}+2 x y \hat{\jmath}$ in the rectangular region in the XOY plane bounded by the lines $x=0, x=a, y=0$ and $y=b$.
18. Verify Gauss divergence theorem for the function $\vec{F}=y \hat{\imath}+x \hat{\jmath}+z^{2} \hat{k}$ over the cylindrical region bounded by $x^{2}+y^{2}=9, z=0$ and $z=2$.

AAAAAAAAA

