STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008 – 09 & thereafter)

SUBJECT CODE: MT/MC/SS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE : MAJOR - CORE

PAPER : STATICS

TIME : 3 HOURS MAX. MARKS : 100

ANSWER ANY SIX QUESTIONS:

(6*17)

- 1. (a) State and prove Lami's theorem.
 - (b) ABCDEF is the regular hexagon of sides l, and at A, forces act in magnitude and direction by AB, 2AC, 3AD, 4AE, 5AF. Show that the magnitude of resultant is $\sqrt{351}l$.
- 2. (a) State and prove Varignon's theorem on moments.
 - (b) Three like parallel forces P,Q,R act at the corners of the $\triangle ABC$ and if their resultant passes through the circumcentre of the $\triangle ABC$ if

$$\frac{P}{Sin2A} = \frac{Q}{Sin2B} = \frac{R}{Sin2C}.$$

- 3. (a) The moments of a given coplanar force about the three points (-2,0);(0,3);(2,4) are +6,+3,-2 units respectively. Find the magnitude of the resultant force of the system and the equation of its line of action.
 - (b) Prove that a system of coplanar forces reduces to either a force or a single Couple.
- 4. (a) A uniform rod rests on a fixed smooth sphere with its lower end pressing against a smooth vertical wall which touches the sphere. If θ is the angle which the rod makes with the vertical, when in equilibrium. Prove that $a = 2l \sin \frac{\theta}{2} \cos^3 \frac{\theta}{2}$ where l is the length of the rod and a radius of the sphere.
 - (b) A solid cone of height 'h' and semi vertical angle α is placed with its base against vertical wall and is supported by a string attached to its vertex and to a point in the wall. Show that the greatest possible length of the string is $h\sqrt{1+\frac{16}{9}\tan^2\alpha}.$
- 5. (a) State the laws of statistical friction and define the angle of friction.
 - (b) A solid hemisphere of weight W rests in limiting equilibrium with its curved surface on rough inclined plane. Its plane face being kept horizontal by a weight 'P' attached to a point in its rim. Prove that the coefficient of friction is

$$\mu = \frac{P}{\sqrt{W(2P+W)}}.$$

/2/ MT/MC/SS54

- 6. (a) A cone of radius *r* and height h is placed on a inclined plane, whose inclination is gradually increased. Find whether the cone tilts before it slides or vice-versa.
 - (b) A hemispherical shell rests on a rough plane, the angle of friction being λ . Show that the inclination of the plane base of the rim to the horizontal cannot be greater than $\sin^{-1}(2\sin\lambda)$.
- 7. (a) Find the Centre of gravity of a Solid hemisphere of radius 'a'.
 - (b) Find the Centre of gravity of an arc of a circle of radius 'a' subtending an angle 2α at the centre.
- 8. (a) A uniform Chain of length '2l' is to be suspended from two points A and B in the same horizontal line, so that either terminal tension is n times that at the lowest point. Show that the span AB must be $\frac{2l}{\sqrt{n^2-1}}\log_e(n+\sqrt{n^2-1})$
 - (b) Derive the equation of catenary in the form $y = c \cosh\left(\frac{x}{c}\right)$.
