STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE : MT/MC/SS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	: MAJOR - CORE	
PAPER	: STATICS	
TIME	: $\mathbf{3}$ HOURS	MAX. MARKS : 100

ANSWER ANY SIX QUESTIONS:

1. (a) State and prove Lami's theorem.
(b) $A B C D E F$ is the regular hexagon of sides l, and at A, forces act in magnitude and direction by $A B, 2 A C, 3 A D, 4 A E, 5 A F$. Show that the magnitude of resultant is $\sqrt{3511}$.
2. (a) State and prove Varignon's theorem on moments.
(b) Three like parallel forces P, Q, R act at the corners of the $\triangle A B C$ and if their resultant passes through the circumcentre of the $\triangle A B C$ if

$$
\frac{P}{\operatorname{Sin} 2 A}=\frac{Q}{\operatorname{Sin} 2 B}=\frac{R}{\operatorname{Sin} 2 C} .
$$

3. (a) The moments of a given coplanar force about the three points $(-2,0) ;(0,3) ;(2,4)$ are $+6,+3,-2$ units respectively. Find the magnitude of the resultant force of the system and the equation of its line of action.
(b) Prove that a system of coplanar forces reduces to either a force or a single Couple.
4. (a) A uniform rod rests on a fixed smooth sphere with its lower end pressing against a smooth vertical wall which touches the sphere. If θ is the angle which the rod makes with the vertical, when in equilibrium. Prove that $a=2 l \sin \frac{\theta}{2} \cos ^{3} \frac{\theta}{2}$ where l is the length of the rod and a^{\prime} radius of the sphere.
(b) A solid cone of height ' h ' and semi vertical angle α is placed with its base against vertical wall and is supported by a string attached to its vertex and to a point in the wall. Show that the greatest possible length of the string is
$h \sqrt{1+\frac{16}{9} \tan ^{2} \alpha}$.
5. (a) State the laws of statistical friction and define the angle of friction.
(b) A solid hemisphere of weight W rests in limiting equilibrium with its curved surface on rough inclined plane. Its plane face being kept horizontal by a weight ' P ' attached to a point in its rim. Prove that the coefficient of friction is
$\mu=\frac{P}{\sqrt{W(2 P+W)}}$.
6. (a) A cone of radius r and height h is placed on a inclined plane, whose inclination is gradually increased. Find whether the cone tilts before it slides or vice-versa.
(b) A hemispherical shell rests on a rough plane, the angle of friction being λ.

Show that the inclination of the plane base of the rim to the horizontal cannot be greater than $\sin ^{-1}(2 \sin \lambda)$.
7. (a) Find the Centre of gravity of a Solid hemisphere of radius ' a '.
(b) Find the Centre of gravity of an arc of a circle of radius ' a ' subtending an angle 2α at the centre.
8. (a) A uniform Chain of length ' $2 l$ ' is to be suspended from two points A and B in the same horizontal line, so that either terminal tension is n times that at the lowest point. Show that the span $A B$ must be $\frac{21}{\sqrt{n^{2}-1}} \log _{e}\left(n+\sqrt{n^{2}-1}\right)$
(b) Derive the equation of catenary in the form $y=c \cosh \left(\frac{x}{c}\right)$.

