STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE : MT/MC/RD54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	$:$ MAJOR - CORE
PAPER	$:$ RANDOM VARIABLES AND THEORETICAL DISTRIBUTION
TIME	3 HOURS

ANSWER ANY SIX QUESTIONS: (EACH QUESTION CARRIES EQUAL MARKS)

1. a) State addition theorem of probability.
b) A problem in statistics is given to three students A, B and C where chances of solving are $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently.
c) State Tchebychev's inequality. Two unbiased dice are thrown. If X is the sum of the numbers showing up, then using Tchebychev's inequality prove that,

$$
\begin{equation*}
P\{|X-7| \geq 3\} \leq \frac{35}{54} \tag{2+5+10}
\end{equation*}
$$

2. a) State product theorem of Probability.
b) State and prove Baye's theorem.
c) The contents of three urns U_{1}, U_{2}, U_{3} are as follows:

1 white, 2 red, 3 black balls
2 white, 3 red, 1 black balls
3 white, 1 red, 2 black balls
An urn is chosen at random and 2 balls are drawn at random. The two balls are one red and one white. What is the probability that they come from the second urn U_{2} ?
$(2+7+8)$
3. a) Define a random variable.
b) A random variable X has the following distribution.

X	0	1	2	3	4	5	6	7	8
$P(x)$	a	$3 a$	$5 a$	$7 a$	$9 a$	$11 a$	$13 a$	$15 a$	$17 a$

(i) Determine the value of a.
(ii) Find $P(X<3), P(x \geq 3), P(0<x<5)$.
(iii) What is the smallest value of x for which $(X \leq x)>0.8$?
(iv) Find out the distribution function of X.
c) Define a continuous random variable. State any two properties of probability distribution function of a random variable. For the following density function $f(x)=x^{2}(1-x), 0<x<1$ find the constant ' c ' and mean. $\quad(2+7+8)$
4. a) Define independent random variables.
b) Let the joint p.d.f of X_{1} and X_{2} be $f\left(x_{1}, x_{2}\right)= \begin{cases}c\left(x_{1} x_{2}+e^{x_{1}}\right) & ; 0<\left(x_{1}, x_{2}\right)<1 \\ 0 & ; \text { elsewhere }\end{cases}$
(i) Determine c.
(ii) Examine whether $X_{1} \& X_{2}$ are stochastically independent.
c) Given the following bivariate probability distribution obtain
(i) Marginal distributions of X and Y.
(ii) The conditional distribution of X given $Y=2$.

X Y	-1	0	1
0	$1 / 15$	$2 / 15$	$1 / 15$
1	$3 / 15$	$2 / 15$	$1 / 15$
2	$2 / 15$	$1 / 15$	$2 / 15$

5. a) Define expectation of a random variable.
b) State the multiplication theorem of expectation.
c) Two random variables X and Y have the following probability density function.
$f(x, y)= \begin{cases}2-x-y ; & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & ; \text { elsewhere }\end{cases}$
Find (i) Marginal Probability density functions of $X \& Y$.
(ii) $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$.
(iii) Covariance between X and Y.
6. a) Define moment generating function of a random variable. Let the random variable X assume value ' r ' with the probability law:

$$
P(X=r)=q^{r-1} p ; \quad r=1,2,, 3, \ldots
$$

Find the m.g.f. of X and hence its mean and variance.
b) A fair coin is lossed four times. Let X denote the number of heads occuring and let Y denote the longest string of heads occuring.
(i) Determine the joint distribution of X and Y.
(ii) Find $\operatorname{Cov}(X, Y)$.
7. a) State the additive property of Binomial distribution.
b) Derive the moment generating function of the Poisson distribution. Find its mean, variance, $\beta_{1} \& \beta_{2}$.
8. a) Derive the recurrence relation for the moments of a Binomial distribution.
b) State any five important characteristics of the normal distribution.
c) Obtain the median of the normal distribution.

