STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008–09 & thereafter)

SUBJECT CODE: MT/MC/RD54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE : MAJOR – CORE

PAPER : RANDOM VARIABLES AND THEORETICAL DISTRIBUTION
TIME : 3 HOURS MAX. MARKS : 100

ANSWER ANY SIX QUESTIONS: (EACH QUESTION CARRIES EQUAL MARKS)

- 1. a) State addition theorem of probability.
 - b) A problem in statistics is given to three students A, B and C where chances of solving are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently.
 - c) State Tchebychev's inequality. Two unbiased dice are thrown. If X is the sum of the numbers showing up, then using Tchebychev's inequality prove that,

$$P\{|X-7| \ge 3\} \le \frac{35}{54} \tag{2+5+10}$$

- 2. a) State product theorem of Probability.
 - b) State and prove Baye's theorem.
 - c) The contents of three urns U_1 , U_2 , U_3 are as follows:
 - 1 white, 2 red, 3 black balls
 - 2 white, 3 red, 1 black balls
 - 3 white, 1 red, 2 black balls

An urn is chosen at random and 2 balls are drawn at random. The two balls are one red and one white. What is the probability that they come from the second urn U_2 ? (2+7+8)

- 3. a) Define a random variable.
 - b) A random variable X has the following distribution.

X	0	1	2	3	4	5	6	7	8
P(x)	а	3 <i>a</i>	5 <i>a</i>	7 <i>a</i>	9 <i>a</i>	11 <i>a</i>	13 <i>a</i>	15 <i>a</i>	17 <i>a</i>

- (i) Determine the value of *a*.
- (ii) Find P(X < 3), $P(x \ge 3)$, P(0 < x < 5).
- (iii) What is the smallest value of x for which $(X \le x) > 0.8$?
- (iv) Find out the distribution function of *X*.
- c) Define a continuous random variable. State any two properties of probability distribution function of a random variable. For the following density function

$$f(x) = x^2(1-x), 0 < x < 1$$
 find the constant 'c' and mean. (2+7+8)

- 4. a) Define independent random variables.
 - b) Let the joint p.d.f of X_1 and X_2 be $f(x_1, x_2) = \begin{cases} c(x_1 x_2 + e^{x_1}); 0 < (x_1, x_2) < 1 \\ 0 \end{cases}$; elsewhere
 - (i) Determine c.
 - (ii) Examine whether $X_1 \& X_2$ are stochastically independent.
 - c) Given the following bivariate probability distribution obtain
 - (i) Marginal distributions of X and Y.
 - (ii) The conditional distribution of X given Y = 2.

X	-1	0	1
$Y \setminus$			
0	¹ / ₁₅	$^{2}/_{15}$	¹ / ₁₅
1	$^{3}/_{15}$	$^{2}/_{15}$	$^{1}/_{15}$
2	$^{2}/_{15}$	$^{1}/_{15}$	$^{2}/_{15}$

(2+7+8)

- 5. a) Define expectation of a random variable.
 - b) State the multiplication theorem of expectation.
 - c) Two random variables *X* and *Y* have the following probability density function.

$$f(x,y) = \begin{cases} 2 - x - y; & 0 \le x \le 1, 0 \le y \le 1\\ 0 & ; \text{ elsewhere} \end{cases}$$

- Find (i) Marginal Probability density functions of X & Y.
 - (ii) Var(X) and Var(Y).
 - (iii) Covariance between X and Y. (3+3+11)
- 6. a) Define moment generating function of a random variable. Let the random variable X assume value 'r' with the probability law:

$$P(X = r) = q^{r-1}p; r = 1,2,3,...$$

Find the m.g.f. of *X* and hence its mean and variance.

- b) A fair coin is lossed four times. Let *X* denote the number of heads occurring and let *Y* denote the longest string of heads occurring.
 - (i) Determine the joint distribution of X and Y.

(ii) Find
$$Cov(X, Y)$$
. (2+8+7)

- 7. a) State the additive property of Binomial distribution.
 - b) Derive the moment generating function of the Poisson distribution. Find its mean, variance, $\beta_1 \& \beta_2$. (2+15)
- 8. a) Derive the recurrence relation for the moments of a Binomial distribution.
 - b) State any five important characteristics of the normal distribution.
 - c) Obtain the median of the normal distribution. (5+5+7)