STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2008-09 \& thereafter)

SUBJECT CODE : MT/MC/RA54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER
 MAX. MARKS : 100

COURSE : MAJOR - CORE
PAPER : REAL ANALYSIS
TIME : 3 HOURS

ANSWER ANY SIX QUESTIONS

1. a) $f(x)$ and $g(x)$ are real valued function if $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ then prove that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$.
b) P.T. $\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}\right)=0$.
2. a) Let f be a non decreasing function on the bounded open interval (a, b). If f is bounded above on (a, b) then $\lim _{x \rightarrow b-} f(x)$ exist. Also if f is bounded below on (a, b) then $\lim _{x \rightarrow a+} f(x)$ exist.
b) If f and g are real valued function, if f is continuous at a, g is continuous of $f(a)$ then $g \circ f$ is continuous at a.
(10+7)
3. a) Define convergent sequence is metric space. In a metric space (S, d) assume $x_{n} \rightarrow p$ and let $T=\left\{x_{1}, x_{2}, \ldots\right\}$ be the range of $\left\{x_{n}\right\}$ then
(i) (T) is bounded
(ii) p is an adherent point of T.
b) Define Cauchy sequence. Show that in Euclidean space R^{k} every cauchy sequence is convergent.
4. a) In any metric space (S, d) every compact subset T is complete.
b) Let $f: S \rightarrow R^{k}$ be a function from a metric space S to Euclidean space R^{k}. If f is continuous on a compact subset X of S, then f is bounded in X.
5. a) State and prove Bolzano's theorem.
b) State and prove Fixed point theorem.
6. a) Every open connected set in R^{n} is arcwise connected.
b) Let \mathcal{F} be a collection of connected subjects of a metric space S such that $T=\bigcap_{A \in \mathcal{F}}$ is not empty. Then $\bigcup_{A \in \mathcal{F}} A$ is connected.
7. a) Let f be a bounded function in the closed bounded interval $[a, b]$. Then $f \in \mathbb{R}[a, b]$ iff, for each $\varepsilon>0$ there exists a subdivision σ, of $[a, b]$ such that $U[f, \sigma]<L[f, \sigma]+\varepsilon$
b) State and prove chain rule in derivatives.
8. a) State and prove the Law of mean.
b) State and prove first fundamental theorem of Calculus.
