STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008 – 09 & thereafter)

SUBJECT CODE : MT/MC/RA54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	:	MAJOR – CORE
PAPER	:	REAL ANALYSIS
TIME	:	3 HOURS

MAX. MARKS: 100

ANSWER ANY SIX QUESTIONS

1. a) f(x) and g(x) are real valued function if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ then prove that $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$.

b) P.T.
$$\lim_{x \to \infty} \left(\frac{1}{x^2}\right) = 0.$$
 (10+7)

- 2. a) Let f be a non decreasing function on the bounded open interval (a, b). If f is bounded above on (a, b) then lim_{x→b-} f(x) exist. Also if f is bounded below on (a, b) then lim_{x→a+} f(x) exist.
 - b) If f and g are real valued function, if f is continuous at a, g is continuous of f(a) then $g \circ f$ is continuous at a. (10+7)
- 3. a) Define convergent sequence is metric space. In a metric space (S, d) assume x_n → p and let T = {x₁, x₂, ...} be the range of {x_n} then
 (i) (T) is bounded
 (ii) p is an adherent point of T.
 - b) Define Cauchy sequence. Show that in Euclidean space R^k every cauchy sequence is convergent. (9+8)
- 4. a) In any metric space (S, d) every compact subset T is complete.
 - b) Let $f: S \to R^k$ be a function from a metric space S to Euclidean space R^k . If f is continuous on a compact subset X of S, then f is bounded in X. (10+7)
- 5. a) State and prove Bolzano's theorem.b) State and prove Fixed point theorem. (7+10)
- 6. a) Every open connected set in Rⁿ is arcwise connected.
 b) Let F be a collection of connected subjects of a metric space S such that T = ∩_{A∈F} is not empty. Then U_{A∈F} A is connected. (9+8)
- 7. a) Let *f* be a bounded function in the closed bounded interval [*a*, *b*]. Then *f* ∈ ℝ[*a*, *b*] iff, for each ε > 0 there exists a subdivision σ, of [*a*, *b*] such that U[*f*, σ] < L[*f*, σ] + ε
 b) State and prove chain rule in derivatives. (7+10)
- 8. a) State and prove the Law of mean.
 - b) State and prove first fundamental theorem of Calculus. (7+10)
