STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008–09 & thereafter)

SUBJECT CODE: MT/MC/DL34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE : MAJOR – CORE

PAPER : DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORMS
TIME : 3 HOURS MAX. MARKS : 100

- 1. Solve: $p^2 5p + 6 = 0$, $p = \frac{dy}{dx}$.
- 2. Solve: $(D^2 4D + 3)y = 0$.
- 3. Form the PDE, by eliminating 'a' and 'b' from $z = (x^2 + a)(y^2 + b)$.
- 4. Form the PDE, by eliminating 'f' from $z = e^y f(x + y)$.
- 5. Solve pq = 1.
- 6. Solve: $\frac{\partial y}{\partial y} = \sin x$.
- 7. Prove that $L(e^{-at}) = \frac{1}{s+a}$, provided s + a > 0.
- 8. Find $L(t^2e^{-3t})$.
- 9. Find $L^{-1} \left[\frac{s+3}{(s+3)^2+4} \right]$.
- 10. Find $L^{-1} \left[\frac{1}{(s-3)^5} \right]$.

$\begin{array}{c} \textbf{SECTION} - \textbf{B} \\ \textbf{ANSWER ANY FIVE QUESTIONS} \end{array} \tag{5 X 8 = 40}$

- 11. Solve: $(D^2 4D + 3)y = e^x \cos 2x$.
- 12. Solve: $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} 3y = x^2$.
- 13. Form the PDE, by eliminating 'f' from $f(x + y + z, x^2 + y^2 + z^2) = 0$.
- 14. Solve: $q^2 p = y x$.
- 15. If $L\{f(t)\} = F(s)$, then prove that $L\{tf(t)\} = -\frac{d}{ds}F(s)$.
- 16. Evaluate: $\int_0^\infty te^{-3t} \cos t \ dt$.
- 17. Find $L^{-1} \left[\frac{s-3}{s^2+4s+13} \right]$.

SECTION – C ANSWER ANY TWO QUESTIONS

(2X20=40)

18. (i) Solve: $(D^2 - 2D + 1)y = x^2e^{3x}$.

(ii)
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = \sin(\log x)$$
.

19. (i) Find the general solution of $x^2p + y^2q = (x + y)z$.

(ii) Solve:
$$z = px + qy + \sqrt{1 + p^2 + q^2}$$
.

20. Solve: $y'' - 3y' + 2y = e^{2t}$, given that y(0) = -3, y'(0) = 5.

