STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2008-09 & thereafter)

SUBJECT CODE: MT/AC/MC34

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH IV - CHEMISTRY THIRD SEMESTER

COURSE : ALLIED – CORE

PAPER : MATHEMATICS FOR CHEMISTRY – I

TIME : 3 HOURS MAX. MARKS: 100

1. Define Eigen values and Eigen vectors of a matrix A.

- 2. If the matrix B is similar to the matrix A, show that A and B have the same characteristic equation.
- 3. State Cayley Hamilton theorem.
- 4. Form the equation whose roots are $1+\sqrt{2}$, 5.
- 5. If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\alpha^2 + \beta^2 + \gamma^2$.
- 6. If y = tanhx find $\frac{dy}{dx}$
- 7. Find $\frac{dy}{dx}$ if $x = a\cos\theta$, $y = b\sin\theta$
- 8. Find $\int \frac{dx}{4+9x^2}$
- 9. Find $\int \frac{\sin^2 x dx}{1 + \cos x}$
- 10. If f(x) is an even function of x, show that $\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx$

- 11. Calculate A^4 when $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$
- 12. Show that the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ satisfies Cayley Hamilton theorem.

- 13. Solve $x^4 11x^2 + 2x + 12 = 0$ given that $\sqrt{5} 1$ is a root.
- 14. If α, β, γ are the roots of the equation $x^3 3ax + b = 0$, find the value of $\sum (\alpha \beta)(\alpha \gamma)$
- 15. Find y_n if $y = \frac{x}{(x-1)^2(x+2)}$.
- 16. If u = (y-z)(z-x)(x-y), show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
- 17. Find $\int \frac{dx}{3x^2 4x 5}$

- 18. Diagonalise the matrix $\begin{bmatrix} 7 & -2 & 2 \\ -2 & 1 & 4 \\ -2 & 4 & 1 \end{bmatrix}$.
- 19. (i) Find the condition that the roots of the equation $x^3 + px^2 + qx + r = 0$ are in Arithmetic progression.
 - (ii) Solve the equation $2x^3 9x^2 + 12x 4 = 0$ given that it has two equal roots.

(8+12)

20. (i) If $y = (x + \sqrt{1 + x^2})^m$, prove that $(1+x^2)y_2 + xy_1 - m^2y = 0$.

(ii) Find
$$\int \frac{2x-1}{\sqrt{x^2+5x+6}} dx$$
 (8+12)
