STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted during the academic year 2011–12)

SUBJECT CODE: 11MT/MC/AT14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH I - MATHEMATICS FIRST SEMESTER

COURSE : MAJOR – CORE

PAPER : ALGEBRA AND TRIGONOMETRY

TIME : 3 HOURS MAX. MARKS : 100

 $SECTION - A \qquad (10X2=20)$

ANSWER ALL THE QUESTIONS

1. Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 3 & 4 & 3 \end{bmatrix}$.

- 2. State the condition for consistency of a system of linear equations.
- 3. Find the characteristic equation of the matrix $\begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.
- 4. Find the equation with rational coefficients, given one root is $1 + i\sqrt{3}$.
- 5. If α, β, γ are the roots of $x^3 + px^2 + qx + r = 0$, find the value of $\sum \alpha^2 \beta$.
- 6. Expand $\sin 5\theta$.
- 7. Prove that $\sinh 3x = 3 \sinh x + 4 \sinh^3 x$.
- 8. Express $tanh^{-1}x$ in terms of logarithmic function.
- 9. Separate into real and imaginary parts $\cos(x iy)$.
- 10. Find $Log_e(\sqrt{3}+i)$.

SECTION - B (5X8=40)

ANSWER ANY FIVE QUESTIONS

- 11. For what values of k the system of equations kx + 2y 2z = 1, 4x + 2ky z = 2, 6x + 6y + kz = 3 has (i) no solution (ii) a unique solution (iii) infinite number of solutions.
- 12. Solve $6x^6 35x^5 + 56x^4 56x^2 + 35x 6 = 0$.
- 13. Find the equation whose roots are the squares of the roots of $x^4 + x^3 + 2x^2 + x + 1 = 0$.

- 14. Prove that $\frac{\sin 7\theta}{\sin \theta} = 7 56\sin^2\theta + 112\sin^4\theta 64\sin^6\theta$.
- 15. Expand $\sin^4\theta \cos^2\theta$ in a series of cosines of multiples of θ .
- 16. If $\sin(\theta + i\varphi) = \tan(x + iy)$, prove that $\frac{\tan \theta}{\tanh \varphi} = \frac{\sin 2x}{\sinh 2y}$.
- 17. (i) Separate $tan^{-1}(x + iy)$ into real and imaginary parts.
 - (ii) If $\cosh u = \sec \theta$, prove that $u = \log \left[\tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right]$

$$SECTION - C (2X20=40)$$

ANSWER ANY TWO QUESTIONS

- 18. a) Determine the inverse of the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ using its characteristic equations.
 - b) Diagonalise the matrix $\begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$. (7+13)
- 19. a) If α , β , γ are the roots of $x^3 + 2x^2 + 3x + 3 = 0$, prove that $\sum \frac{\alpha^2}{(\alpha+1)^2} = 13$.
 - b) Determine completely the nature of the roots of the equation $x^5 6x^2 4x + 5 = 0$.
 - c) Solve $x^4 + 2x^2 16x + 77 = 0$, if one root is $-2 + \sqrt{-7}$. (8+8+4)
- 20. a) Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\sin x + \cos 2x}{\cos^2 x}.$
 - b) Prove that one value of $\alpha + i\beta = b^{x+iy}$ is $\frac{\tan^{-1}(\beta/\alpha)}{\log_e(\alpha^2 + \beta^2)}$.
 - c) If $\cos \alpha \cosh \beta = \cos \varphi$, $\sin \alpha \sinh \beta = \sin \varphi$ prove that $\sin \varphi = \pm \sin^2 \alpha = \pm \sinh^2 \beta \tag{6+7+7}$

