STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086

(For candidates admitted during the academic year 2011-12)

SUBJECT CODE: 11MT/AC/MC14

B. Sc. DEGREE EXAMINATION, NOVEMBER 2011 BRANCH IV - CHEMISTRY FIRST SEMESTER

COURSE : ALLIED - CORE

PAPER : MATHEMATICS FOR CHEMISTRY – I

TIME : 3 HOURS MAX. MARKS: 100

1. Define characteristics roots of a matrix.

2. Show that the two matrices A and $P^{-1}AP$ have the same characteristic roots.

3. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 + px^3 + qx^2 + rs + s = 0$ then find S_1, S_2, S_3, S_4 .

- 4. Solve the equation $x^4 + 2x^3 5x^2 + 6x + 2 = 0$ given that $1 + \sqrt{-1}$ is a root of it.
- 5. Prove that $\cosh^2 x + \sinh^2 x = \cosh 2x$.
- 6. Find $\frac{dy}{dx}$ when x and y are connected by the relation $x^2 + y^2 = a^2$.
- 7. If $u = \log(x^3 + y^3 + z^3 3xyz)$, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$.
- 8. If $u = \frac{xy}{x+y}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + u$.
- 9. Evaluate $\int \sin^2 3x \ dx$.
- 10. Prove that $\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$.

$\begin{array}{c} SECTION-B \\ ANSWER \ ANY \ FIVE \ QUESTIONS \end{array} \tag{5 X 8 = 40}$

11. Find all the characteristic roots of the matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}.$$

12. Find the characteristics equation of $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ and show that the matrix A

satisfies the equation.

13. Solve the equation $x^3 - 19x^2 + 114x - 216 = 0$ given that the roots are in G.P.

14. If $x = \sin \theta$, $y = \cos p\theta$, prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$.

15. If
$$y = \sqrt{\sin x + \sqrt{\sin x} + \sqrt{\sin x}}$$
 ... to infinity find $\frac{dy}{dx}$.

16. If z = f(x, y) and $x = a \cos \theta$, $y = s \sin \theta$, prove that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2.$$

17. Find $\int \frac{dx}{(x+1)\sqrt{x^2+x+1}}$.

- 18. Diagonalise the matrix $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.
- 19. a) If α , β , γ are the roots of the equation $x^3 + px^2 + s = 0$, find the value of $\alpha^3 + \beta^3 + \gamma^3$.
 - b) Solve the equation $4x^4 20x^3 + 33x^2 20x + 4 = 0$.
- 20. (i) Find the nth differential coefficient of $\cos x$, $\cos 2x$, $\cos 3x$.
 - (ii) If u = (y z)(z x)(x y), show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
 - (iii) Evaluate $\int \frac{dx}{1-6x-9x^2}$.
