B.A. DEGREE EXAMINATION NOVEMBER 2011
 BRANCH IV - ECONOMICS
 FIRST SEMESTER

COURSE	: MAJOR - CORE
PAPER	$:$ MATHEMATICAL METHODS FOR ECONOMICS-I
TIME	$: 3$ HOURS

SECTION - A

I. ANSWER ALL QUESTIONS.

1. Show that $(2,-1,3),(1,-1,0)$ and $(3,-1,6)$ are collinear.
2. Find the unit normal vectors to the plant $2 x-y-2 z=5$
3. Find the slope of tangent to the curve $Y=3 x^{2}+3 \sin X$ at $x=0$.
4. Find the equation of the hyperbola if centre $(0,0)$ length of the semi-tranverse axis is $5: \mathrm{e}=7 / 5$ and the conjucate axis is along the x -axis.
5. Find $\operatorname{Lt}_{x \rightarrow 2}\left(x^{2}-4\right) / x-2$
6. Find the derivative of $4 x^{2}+3 x+2$ from first principle.
7. Define Differentiation?
8. Find y_{1} and y_{2} if $y=5 x^{3}+2 x^{2}+1$
9. Define partial derivative.
10. The total cost of function of a commodity is given by $C(x)=0.5 x^{2}+2 x+20$ Find the marginal cost.
SECTION - B

II. ANSWER ANY FIVE QUESTIONS

$(5 \times 8=40)$
11. Find the vector and Cartesian equation of the plane through the point $(1,3,2)$ and parallel to the lines

$$
(\mathrm{x}+1) / 2=(\mathrm{y}+2) /-1=(\mathrm{z}+3) / 3 \text { and }(\mathrm{x}-2) / 1=(\mathrm{y}+1) / 2=(\mathrm{z}+2) / 2
$$

12. Find the equation of the plane passing through the point $(2,1,-1)$ and the line of intersection of the planes

$$
\mathrm{r}(\mathrm{i}+3 \mathrm{j}-\mathrm{k})=0 \text { and } \mathrm{r}(\mathrm{i}+2 \mathrm{k})=0 .
$$

13. Find the axis of the parabola if $y^{2}-2 y+8 x-23=0$?
14. Find the eccentricity of the conic if $9 x^{2}+5 y^{2}-54 x-40 y+116=0$
15. Differentiate (a) $\left(x^{2}+1\right)(x+2)(b) x^{3} e^{x} \log x(c) e^{x}(1+x)$
16. The cost for a monopolist firm producing X radios per week is given to be $4 x^{2}-80 x+500$. To have minimum cost how many units should be produced per week.
17. Find the second order partial derivatives of $u=\log \left(x^{2}+y^{2}\right)$

SECTION - C

III. ANSWER ANY TWO QUESTIONS.

18. a) The line $5 x-2 y+4 k=0$ is tangent to $4 x^{2}-y^{2}=36$ then find k ?
b) Find the radius of the director circle of conic $9 x^{2}+16 y^{2}=144$
19. Find the relationship between Average and Marginal Cost
i) When AC falls MC $<\mathrm{AC}$
ii) When AC is minimum $\mathrm{MC}=\mathrm{AC}$
iii) When AC rises MC>AC
20. Find the elasticity of demand for the demand function $x=27 / p^{3}$
21. a) Find the maxima and minima of $Z=f(x, y)=3 x^{2}+y^{3}-3 x y$
b) Using Euler's theorem prove the following $u=x^{3}+y^{3}+z^{3}+3 x y z$
