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INTRCDUCTION AND PRELIMIFARIES

A region in the complex plane denoted by € is an open
connected set. A function f regular in a region D is called
p-valent if no value of the function is taken more than
p times in D and if atleast one value of the function is
taken exactly p times, When p is unity the function is said
to be univalent or schlicht in D, In this case, f never
takes in D the same value more than once, that is,
f(zl) £ f(zz), zy # Zgy Zys Zy € D. By the celebrated Riemann
napping theorem which states that there exists a holomorphic
univalent function mapping an arbitrary simply connected
region in @ other than the whole plane (that is, having
atleast one boundary point ) onto the unit disc, given any
simply connected resion D in € and a univalent analytic
function defined on D we can always associate with it, one
defined in the unit disc, Thus the unit dicsc can be taken
as the domain of investigation of univalent functions, Further,
if f is univalent in D then so is the function F defined by
F(z) = (£(2z) - £(0)) / f'(O), since the derivative of a
univalent function does not vanish in D, This observation is

used to normalise the function f by the condition £f(0)=0;f*(0)=1
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and as such, any property of f can be immediately translated
to the corresponding property of F, Therefore without loss

of generality the study of univalent functions can be confined
to the study of the normalised class of univelent functions
regular in the unit disc, The introduction of the normalised
class of univalent functions facilitates computations and
leads to simple, elegant results., Moreover, the normalised
class is compact in the space of regular functions defined

in the unjit disc, endowed with the topology of uniform

convergence in compact subsets,

The following notations are used throughout the thegis.,
¢ denotes the complex plane, E ={z : |z| < 1, z € € }the
open unit disc, H the class of regular functions f£(z) in E
normalised by the conditions f(0) = 0 = £'(0)-1 and S the
subclass of H consisting of univalent functions, ZLet P denote
the class of regular functions p(z) in B with p(0) = 1 vhich
map E into the right half plane characterised by the condition
Re p(z) > 0, z € E, This class plays a very important role
in the study of univalent functions, The various geometrical
properties which arise in the study of special regions like
convex, starlike, close-to-convex, spiral-like and regions

having bounded boundary rotation can be completely characterised

by equivalent analytic formulations with the help of the
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members of the class P, This class is equipped with

interesting representations like Herglotz formula and
representation in terms of unit functions (regular functions
bounded by unity in E) which are given below, First we introduce

the notion of subordination and state a well known lemma.

Definition (1.1,1). Subordination[34]. If f and g are
analytic in E and g(z) = f(w(z)), vhere w(z) is analytic and
satisfies {w(z)| ¢ |z| in B, then g is said to be subordinate
to £ in E, In symbols we cexpress thic by g4 f, When f is
univalent in E, this is analytically equivalent to the

statement z(E) Cf(E), g(0) = £(0).

Theorem;il.l.zz. Schvaréis Lemia [34]. Tet f be a holomorphic

function in the unit disc and suppese that f(0) = O and

|£(z)| < 1 for |z| < 1. Then

(1) |£(2)]| < |z| for |z| < 1,
(i1) if for z_ # O the equality |£(z ) | = |z0| holds then

£(z) = Az where |A| = 1.

Theorem (1,1,3). Herglotz formula [44]. The function p

belongs to P if and only if there exists an increasing

function W(t) (- m ¢ t < ®) such that

p(2) =} J.+_e_;ﬂ£ a “1‘(1:),' Y(n) - Y(-m) = 1.
T l-e z



Theorem (1.1.4) [34] . The function p belongs to P if and

only if there exists a function w(z) snalytic in E satisfying
w(0) = 0 and |w(z)| <1 for z € B, such that

p(z) = liﬁﬁ&l ]
1-w(z)

Since the function w = (1+z)/(1-z) which is a member of P
maps the disc E onto the right half plane Re w > 0, it follows
immediately from the definition of the class P and the concept
of subordination that a function p belongs to the class P, if
and only if p(z)<L (1+z)/(1-z) on E. This representation for
members of P in terms of unit functions motivated Janowski [20]

to introduce a new class of functions which we denote by P(4,3B),

Definition (1.1.5)[20]. A function p(2z) analytic in E belongs

to the class P(A,B), -1 ¢ B < A <1, if and only if,
p(z) = (1+aw(2))/(1+Bw(z)), z € E where w(z) is analytic in E

with w(0) = 0 and |w(z)| < 1 in E.

Clearly, the class P(+1,-1) coincides with the class P
and a function p(z) belongs to P(A,B) if and only if,
p(z) < (1+Az) /(14B%) in E, Further, since the transformation
™(z) = (1+Az)/(1+Bz) maps the region |z| < r univalently
onto the disc with centre at (1~ABI2)/(1-B2r2) and radius

(A-B)r/(l—Bzrz) we derive the following results,
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Theorem (1,1,6). Let p(2z) belong to the class P(A,B) where

-1 ¢ B <A <1, Then, for |z| { r, we have

1-Ar < lp( Z) l -<- 1+Ar
-Br ~ 1+Br

| Inp(a)| ¢ AR

-B™r

| ave p(2)| < tan {—UFHE o, 3.

1-A°r"°) (1-B“r~)}

s

Furthermore it is easily seen that P(A,B)C P and for
other suitable choice of the parameters A and B we obtain
several well known interesting subclasses of P, We list some

of them and state some relations existing between them (Seel[20]).

‘Definition (1.1.7).

(i) P, = P(1-2a,-1) ={p : Re p(2) > a, z € E, 0 a<i1}
(i1) % = P(a, =@) = {p | (p(2)-1)/(p(2)+1)] < «, zeE,0<o<1}
(1i1ii)P{oJ= P(«,0) ={p: |p(z)=1] <a, zeE, 0 <a<y

pa

(iv)P(o)= P(1, ¢ 1) ={p

.o

lav)

Ip(z)-a| <& z€E, a>5}

Remark (1.1.8) . The following relations can be easily

verified,

. C . » . CP 1 B
(1) P(A,B) P(l-A)/(l—B) (ii) P(A,B)C P(14+B))

(111) P(A,-1) = P(q_py /0 (iv) P(1,B) = P(1/(1+B)).



We now proceed to introduce some well known subclasses
of S which can be defined by simplie gecmetrical properties.
These classes can be characterised by simple analytic conditions
involving the members of the class P, These properties and

other basie properties can be found in [45] .

Definition (1,1,9)[45]. A function f in H is called univalently

starlike if it maps E univalently onto a region starlike with
respect to the origin, that is, the point w belongs to f(E)
implies that the line segment joining the origin and the point
w entirely belongs to f(E). We denote by s* the class of
starlike functions with respect to the origin, A function f
belongs to s* if and only if zf'(z)/f(z) belongs to P,
Geometrically this condition is equivalent to the fact that .
for a starlike function f, arg f(z) increases monotonically

as z describes the circle |z| =1, » < 1.

Definifion (1,1.10)[45], A function f ¢ H is starlike of

order a, 0 ¢ « < 1, if Re(zf'(z)/f(z)) > o, z € B, and if for
every € > O sufficiently small there is a Zys Zg € E for which
g - *. . -
‘Re{gof'(zo)/f(zo)}< a + €, We denote this class by S,; it is

: * * * *
clear that Sa CS and when o« = O Sa coincides with S .,

*
Thegrem (1,1.11) [45]. Let f € Sy. Then for |z| =7, r <1

(1) Re(zf'(2z)/£(2)) > (1+(20-1)1)/(1+1),

(11) /()2 ¢ J2(2)| < 2/(1-r)? (19,
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These bounds are sharp for the function fo defined by

t,(2) = z(1-ez)'2(1‘“), le| = 1.

The class S; was introduced by Robertson [ 45] and has
been extensively investigated. This class is a special case
of the more general subclass
S*(A,B) = {f € H; z£'(z)/2(z) € P(4,B), z € B} of starlike
functions introduced by Janowski [20]. We note
S*(1—2a, -1) = S;. The following special cases of S*(A,B),
namely_s*(a, ~a) introduced by Padmanabhan [ 36],

S*(1,~% -1), M> % ) introduced by Janowski [19] and also

studied by Singh [54] , are of considerable interest.

Definition (1.1.2) [45}. A function f in H is convex univalent

if it maps E univalently ontc a convex region, that is,

wi,w2 belongs to f(E) implies the line segment joining W, and
Vg, belongs to f(®) or, equivalently, f(E) is starlike

with respect to each of its points. We denote by K the class
of eonvex functions in E, A function f is a member of K if
and only if the function p defined by p(z) = (1+zf" (z)/f'(z))
z € B is a member of P, Geometrically this means that the
function w = f(reig) maps each circle |z| = r, r < 1 onto a
simple closed contour whose tangent rotates in the counter
clockwise direction as arg z = 6 increases when z describes

the circle |z| = r. It is easily seen that f € K if and
*
only if zf' € S .
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Definition (1.13) [45] ., A function f € H is convex of order

By (O < B < 1), if Re(l+zf" (2)/f'(z)) > B, 2z € F, and if for

every € > O sufficiently small there is a Zos Zg € E for

*

which.Re(1+zOf" (zo))/f}(zo) < B+ €, If KB denotes this

class it is clear that X, CK and KO =K,

g

Theorem (1,1.14)[45].Tet ? € Kge Then for |z| = =,
((1+2) 2Ly (28-1) < 1£(2)| < (1-(1-x)28Ly /(2p-1).

These bounds are sharp,

Theorem (1.1.15)[56] . TLet f € K. Then f satisfies

Re(zf}(z)/f(z‘) > 2-1 and Re(f(z)/z)> 2_1, z € E. Consequently,

for |z| = r,

R(zf'(2)/2)) > (1~|—r)-—1 and
Iarg(f(z)/z)ls arc Sin r.
These bounds are attained by the function z(1+z)_1.

Definition (1.1.16) [52]. A function £ € H is said to be close-

*

to-convex if there exists a function g € S and a real
number ¢, || < g such that Re(el¢zf}(z)/g(z)) >0, z € E.
We denote this class by C. The above inequality is equivalent
to Re(e®'(2z)/m(z)) > 0, z € E where h € K, Also £ € C if

5]

6o ,
and only if S Re(1+zf" (z)/f'(z))d6 > ~ n whenever

2]

1

0<e, <6, <6

v ‘6
1 0 1+2m and f(z) # 0 for z = re- and r < 1.
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Close~to-convex functions were introduced by Kaplan [23].'

The above definition gives a normalised subclass of this class.

- »*
Theorem (1.1.17)[52]. XCsScCcC C S,

Definition (1,1,18) [25]. f is said to be close-to-convex

*
of order a and type B, if there exists a function g € SB and

such that Re(ej¢ zf' (z)k(2)) > «q,

(I

a real mmber g , |[¢| <3
z€E O¢a<cl, IfC(a,B) denotes this class it is clear

that €(0,0) = C.

Mocanu [33 Junified the classes of starlike functions
and convex functions and introduced a fascinating class of
functions known as a-convex functions. We denote this class

by M(a).

Definition (1.1,19)[53].A function f € H with f(z) f'(z)/z # 0

for z € E belongs to M(a) if and only if

Rofa(trz 202 ) 4 (1oa) 2 242 75 0, 2 ¢ B,
£1(z) f(z

where a is any real number, Tor reel «, a-~ccnvex functions

are known to be starlike univalent [30] ..

This concept of unifying the existing classes of undvalent
functions attracted many researchers and several new classes

have been introduced,

1

Definition (1.1,20)[8].Let N(a) denote the class of functions
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f € H satisfying the condition

Pe[(1-a) 22'(2) | 4 (?f'(Z));] >0, z ¢ E,
g(z) g'(2)

‘ *
where g € S and @ is a non-negative real number., It has been

shown [8] that functions in N(a) are all close-to-convex.

In 1959, Sakaguchi [ 51] introduced a subclass of close-
to~convex functions whose members are starlike with respect
to symmetric peints, We denote this class by S;. The

interesting geometrical feature possessed by these functions

is revealed in the following definition,

Definition (1,1,21)[ 51].Let f be analytic in E and suppose

that for every r => 1 (r < 1) and every z  on |z| = r the
angular velocity of f(z) about the point f(—zo) is positive
at z = z, as z traverses the circle |z| = r in the positive

direction, that is
Re[zf'(z)4$(z)—f(” ZO))] >0, z = Zy0 4Zol =T,

In this case f is called starlike with respect to symmetric

points,

Theorem (1,1.22) [511.A necessary and sufficient condition

for £ € H to be univalent and starlike with regpect to

symmetric points in E is that,

Re [ zf£'(z) f£(2)-£(~2))]> 0, z € E.
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Remarks (1,1.23). The above condition implies that the vector

f(z)~f(-2z) turns continuously in one direction as z describes
each circle |z| = r ¢ 1., It is also evident that the class §3§
includes the classes of convex functions and odd functions
starlike with respect to origin and is contained in the class

of close-to-convex functions.

Theorem (1,1.24) [46] . ZLet the function (1-t)f(z) + tf(~z)

. be subordinate to the univalent, analytic function

f(z) = z + ¥ a2 in E for an interval 0 ¢ t < t .. Then f is
5 N ST 27

starlike with respect to symmetric points in E,

Recently Das and Singh [ 11] extended the results of

Sakaguchi to other classes of functions with respect to

symmetric points in E.

Definition (1,1,25) [11). A functicn f € H is said to be convex

with respect to symmetric points in E if for every r = 1(r < 1)
and every z_ on |z] =T

Re [z(zf'(z))'/(zf'(z)+zof'(-zo))] > 0 for z.= zo,|zO|=r.
We denote by KS the class of convex functions with respect to
symmetric points.

TPheorem (1,1.26) [11]« A necessary and sufficient condition

for £f € H to be univalent and convex with respect to symmetric

points in E is that,
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Rel (zf'(z))'/(f(z);f(—z))']'> 0, z € E,

It immediately follows that f € KS if and only if
22'(z) € S..

Definition (1.1.27) [11]eA function f € H is said to be

close~to~convex with respect to symmetric points if there

*
exists a function g € SS such that

Re [zf'(z)4g(z)-g(-z))] > 0, z € E.

We denote the class of close~to-convex functions with respect

to symmetric points by Cs.

The class C(o,B) introduced by Libera (See Definition
(1.1.18) induced Bharati{ [5] to introduce the following class,

Definition (1,1,28) [5 Jtet 1.(4,B) denote the class of functions
f € H satisfying the condition z2f;(z)/g(z)h(z) € P(A,B)

where g,h € H and are subjected to the folleowing conditions

(1) g € s; and h € K (ii) g h € K and (iii) g and h

satisfy Re(g(z)/z) > 0, Re(h(z)/z) > O for z € E, If

N
o
= B

Next we list a few subclasses of H which generalise the

and h(z) = z we note that L(A,B)C C(0,B).

classes of starlike and convex functions but are not
necessarily univalent. These functions also possess nice

geometrical properties.



Definition (1,1,29) [ 29).For k > 2, let V, denote the class

of functions f € H that are locally univalent in E and map E
onto a region with boundary rotation atmost k®., Analytically
this is equivalent to the condition,
27 . . R
; 6, ,. 6
5 |Re(1+relef"(rel )/t (re” ))| ae < km, 0 ¢ r < 1.
Vk is the class of functions of boundary rotation bounded

by k=,

Remarks (1,1,30). If the boundary of a simply connected

domain D has a continuous tangent at each of its points,

the boundary rotation of D is the total variation, for a

full turn, of the angle of direction of the tangent to D,

v2 coincides with the class of convex functions and

Paatero [ 35] has shown that all functions in V,, k=2,3,4 are
also in S, However for k > 4 through ccunter examples it

can be shown that there are functions in Vi that are not in S,

The basic properties of V, can be found in [29],[24] ana [35].

béiinition 51,1,515.[58]-Let Uk denote the class of functions

£ € H with £(2)/2z # O in E and satisfying the condition

211: 3 > (]

6 6 6
J | Re(xe™ £ (ve” ) /f(xe™))|d0 ¢ km, O < T < 1,
0

The class uk is known as the class of functions of argument

rotation bounded by km.
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Remarks (111.32). Geometrically the above condition means

that, the total variation of the angle which the radius vector
f(reie) makes with the positive real axis is bounded by

KT as z = rel " describes the circle |z| = r for each r < 1.

We note that Ué = S*, but for k > 2 the class Uk in general

does not consist of univalent functions. From (1.1.29)

and (1.1.31) it is clear that £ € V, if and only if zf' € U,.

Coonce and Ziegler [10] unified these classes and

introduced the class of functions with bounded Mocanu Variation.

Definition (7.1,33)[10)-Tet MV[a,k] (¢ € R, k > 2) denote the

class of functions with bounded Mocanu variation, that is,
the subclass of functions £ € H with £'(z)f(z)/z # O in B

and satisfying the condition

T 2n . . . . . . .
- f IRe[(l-a)reief'(rele)/f(rele)+a(1+relef"(rele)/f‘(releﬁﬂ
0
a6 < kn O <r <1,

Remarks (1.1.34). A geometric interpretation of the above

condition may be given as follows : Let C_ denote the image
of the circle |z| = r under the mapping w = f£(z). Then

¢= arg f(z) is the argument of the radius vector from the
origin w= 0 to w = f(z) and %= arg(izf'(z)) is the
argument of the tangent to C, at w = f(reie) with direction

determined by that of increasing 6. The angle =(1l-a)g+a
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is called the Mocanu angle, If we set
J(a,f) = (1-a)z£'(z)/£(z) + a(l+zf" (2)/£'(z)) it can be

shown that 2¥ = Re J(a,f) (see [10] ). Thus £ € Mv[a,k]
26

if and only if the total variation of the Mocanu angle W is
bounded by km, It is easy to see that MV [a,2] = M(a) the

class of o—convex functions. (See Definition (1,1.19)).

Theorem (1.1,35), Jack's Lemma [17]-Tet @ > O and

W

w(z) : |z| < a -> @ be analytic, non-constant with w(0) = O,
If w| attains its maximum on the circle |z| = r < @ at Z s

then there exists m Z 1 so that zoW'(zo) = mw(zo).

Next we proceed to mention Goluzin}s method for finding
the solution of extremal problems fcr the classes of functions

which have an integral representation.

Let Eg denete the clags of regular functions having the
representation ? g(z,t) da(t), where g is a fixed functicn
of two variablesﬂz and t for z € E ~nd for each t inl[-n, =l
and «(t) runs through all pcssible nondecreasing functions

T
in =t ¢ t < m subject to the condition [ da(t) = 1., By a
- - . -7

Suitable variation of the function a(t) Goluzin has given
two types of variations for functions in Eg' We state

the two variational fommulas propesed by Goluzin [15] .
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Theorem (1.1.36) [15].Let f € E_, t4,t, be given with

g 2
= n <t <t, < mand let K be any number in [-1,1]. Then

there exists a real constant C independent of Aand t such

that the functions f, defined by

t .
2
f*(z) = f(z) + X [ Q_E_(_Z_,_t_)_ l o(t) - Cl dt, z € E,
t ot
1

are also in Fg.

Theorem (1.1,37) [15].Let f € E_ and tl and t2 with
o

-n <ty < t2 < T be two jump points for the function a(t).
Then there exists a number %} > O such that for all A in

(=%, ™), the functions £, defined by
fex(2) = £(2) +7q;g(z,t1) - g(z,tzn
are also in E _,
4

é;méfké (1.1.38)«.Goluzin [15] has solved certain extremal

problems in the class P and S. with the help of these
variational formulas., This method has been adopted by
Pinchuk ([40],[41]) to solve extreme problems for starlike
and convex functions of order « and also fcr close-to-convex

functions.

We next state some results concerning the Hardy class

of some univalent functions and their derivatives,

Definition (1.1,39) [13]+For p > 0, a function £ € H is said
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D R i, |p
%o belong to the Hardy class H® if lim [ |f(re™ ) |* ae
r-1o

exists and is finite.

Theorem (1,1.40) [27 LIf £ is univalent then f ¢ HY for all

1
P <3 -

N P P/1-p
Theorem (1,1,41) [13].I1f £' € H (0 < p < 1) then f € H .

Theorem (1.1,42)[131.If q € P then q € H® for all p < 1.

Theorem (1.1.43) [14L(i) If g € S, then g € H® for all

p < 1/2(1-a) and g¢' € H° for all p < 1/(3-20a).
s o * it -
(ii) If g € Sy and g(z) # gt(z) )2a 2

az(1-ze where t is
real and a is compleX then there exists an € = €(g) such that

H1/2(1-a)+6 Y 1/(3--2a)+6

g € and g' ¢ H .

Theorem (1,1,44) [141.(i) If h € K then h' € ® for all p < %
and h € H® for all p < 1.
Z
-1
(ii) If h € X and h(z) # ht(z) = [ gt(w)w dw where gt(z)
o}
is defined above then there exists an € = €(h) such that
1
- +€
h' ¢ H © and h e € .
We require the integral reprecentation of a hyper-
geomatric function which plays a useful role in several
branches of mathematics., The properties of the hyper-

geometric series and the associated function can be found

in Leal .



Definition (1.1.45) (641 . The series

F(a,B, Y;2z) = 1+ @ z + ajOC+1)B(ﬁ+1) 742 + aee
Y T (¥ +1)2!

is called a hyper-geometric series, This series defines a
function analytic in E, Tt is also analytic and single valued
throughout the cut-plane having a cut from +1 to + P along

the real axis, The integral representation of the function

is given by

F(a!B’T;Z) =

P 1 '
‘.'”“) TPy P11 £,y as
T(g) T(r-B) o

where ReY> Re B> O.

The conjecture of ®6lya and Schoenberg [43] regarding
the convolution of convex functionsled to the study of
convolution properties of several subclasses of S and discovery
of new classe8cfanalytic functions (See [57),(47]1,[48],[11).

We need the following classes.

Definition (1,.1.46)«Convolution of analytic functions. Let

[+ [= e}
’ n n
f, g € H where f(z) = z+ I a2 andg(z)=z+z'bnz.
n=2 n n=2
oo n .,
Then (f * g)(z) = £(2) * g(z)= z + n§2 a b 7 is called the

Ha®amard product or convolution of f and g

o



This product is commutative, associative and distributive
with respect to addition in H., Other properties of convolution

used in the thesis are stated at appropriate places.

Definition (1,1.47)[49). A function f analytic in E normalised

by £(0) = 0, £'(0) # O is called prestarlike of order a, o ¢ 1

if and only if

Re(f(z)/zf?(O)) > 2‘1, z € B, for o« = 1,

- - »*
z(1-2) 2(1-a), £(z) € S, , z € E, for a < 1;
where S; dencotes the class of all starlike functions of corder

*
a, @ ¢ 1. We denote by L, the class of prestarlike functions

of »rder «,

‘ * | * * * *
Theoyem (1,1,48) [49].L = K, Ll/z = 81/2 and LB C L, whenever
B a1,

Definition (1,1.49) [63].Let4 : ¥ —> H be a continuous

linear operator. Then <% is called a convexity preserving
operator if for each f € H the range of values of -“f lies

in the closed convex hull of the range of f,

S % "
Theorem (1,1.50) [ 49 Jslet £ € L,y € € Sy and F € H, Then

NP = (£ * gF)/(f * g) is a convexity preserving convolution

operator.
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We next introduce a class of functions studied in [18]

which unifies several well known classes.

Let Ka(z) = z(l—z)—a, a € ¢ with Re a > 0, where a

suitable branch is chosen so that Ka € H, Tet f € H be given
©0

by f(z) = z + I anZn, where a_ # 0 for all n and

=2
1im Ianll/n = 1. Then, we denote by £71 the unique well
1l — o0

-1
defined function in H for which f = * f = Kl'

Definition (1.1,51) [18]. Let R (a > 0, a > 0) denote the class
of functions £ € H such that

(K3+z*vf)(zj —'%] . (1-0) a£¥Ka+1* )(z) _ a—1]}> .
(K 1% £)(2) (Kg* £)(2) 2a

Refa(a+1)l

where (Ka* £)(z)/z # 0 ~nd (Ka+1* f)(z)/z # 0 for z € E.

Definition (1,1,52) [18].Let Cy(a > 0) denote the class of

functions £ € H such that

8 , - A
2 (K. .* £)(z) _
[ Re[—E2t2 ~%]de> o,
94 (K 1% (z) ° a+l
i
where O £ 61 < 62 < Gi+2n, z=Tre , r < 1and
(Kaﬂ* £)(z)/z # O for z € Ef

a . . .
Remarks (1,1.53) . When a = 1, the class R, coincides with
the class M(a) of a-convex functions (See Definition (1.1.19))

and Ca reduces to the normalised class of close~to-convex



functions (see Definition (1.1168)).

Theorem (1.1.54) [ 18].We have the following relations.

1 o
(1) Ra c Ra+1

‘s o s : * *
(ii) f ¢ R, if and onvy if Ka fe S(l a) /2
‘s s 1 : * *
(iii) f € RS if and only if K, ,* £ € S(1-a)/2

. 1 . R—— | o
(iv) £ ¢ R; if and only if K = * (Ka+1* f) ¢ R, -

It is easily seen that (iv) generalises the well known

- *
result, namely, f € KX if and only if zf' € S .,

Theorem §1.1.55}118].f € Ca if and only if there exists a
function g € Ré such that
(K. .* £)(2)
Rel —2t1 1> 0, z € E.

(X_,4* &)(2)

When a = 1, this reduces to a well known result due to

Kaplan,

b for 0 < o £ B,

0<b<a, a>l1land the functions in Rg and C, are close-to-

o
Theorem (1.1.56) [18]+We have Rg CR, C 0, CO

convex and hence univalent,

a
This theorem generalises the result Rl C Ri for

a > 0 [30] .
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In this section we give a brief outline of the subject
matter of the thesis, This thesis aims at defining and
studying some new classes df functions analytic in the unit
disc with special attention to the properties of univalence,
representation and distortion theorems connected with them
and their invariance under integral operators. In view of the
fact that the study of univalent functions provides an
interesting link between geometry and analysis, wherever possible,
geometric interpretation of the analytic condition defining a
new class has been furnished. The classes intrcduced in this
thesis are either new subclasses of well known classes or
they unify and generali=es some of the existing classes whose
definitions and important properties are outlined in the

earlier section of this chapter,

*
The second chapter is devoted to the study of the class SQ
of functions starlike with respect to symmetric points (See
Definition (1.1.21)) and related classes of functions., Ve

*
introduce and study some important subclasses of the class Sg.

We Bay a function f € H is a member of the class
s;(A,B) (-1 ¢ B< A1) if and only if 2281 (2) /E(2)~f (~2))

is subordinate to the function (1+Az)/(1+Bz) in E. Clearly
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LY

* * *
s (A,B) css(1,-1) = S, and by giving suitable values for A

*
and B several interesting subclasses of Ss can be realigzed
as special cases, Certain properties like coefficient
estimates, region of convexity and distortion theorems have

*
been studied for the class SS(A,B).

We say a fimction f € H is strongly starlike of order «
with respect to symmetric points if and only if

larg [2£'(2) /E(2)-£(-2)f | < g, 0<« <1, z€E, If

*
S; [a] denotes this class it is easily seen that
*
SS « The effect of the integral transform

* *
S [a]CSS (1]

-~ % c-1 *
(c+1)z {t f(t)at where c € € and f € Sq

given by I(f;
has been investigated. Representation and distortion theorems

have also been derived for this class.

The classes of a-convex functions and «a-close-to~-convex
functions with respect to symmetric points have also been
introduced and studied. An extremal problem of a general
nature has been solved for the claces S; using Goluziﬁ's

variational methods.

In the third chapter convolution properties have been
used to define three new classes of analytic functions in E,

Let
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I(e,f,a) = a(a+1)[(Ka+2* O¢) _ a ]+(1-a)a'[ga—+£-(-:z-)- -?i;l]‘
(Kgpr* D(2) a1 (K, * £)(2)

where Ka(z) = z(l;z)-a, a > 0and o ) O,
We introduce the following classes of functions,
(i) £ e Mvla,k,a }(a> 0, k > 2) if and only if f € H,
(Ka* £)(z)/z # O, (Ka+1* f)(z)/z # 0 for z € E and

n - ie |
J | Re J(a,f,a)| a6 < kn , z=re € E,
0

o
(i1) £ e R (€) (¢ >0, €< 1) if and only if £ € H and
Re J(a,f,a) >¢, z € E,

(111) £ € C,( @) (@< 1) if and only if f € H, (K_ . * £)(2)/z £0
for z € B and
ie
J Re {J(1,f,a)~@}d6 > = 7m, z =1e” , O

r <1, 8, < 6,e
®

1 2

| Fa

The class MV[ «,k,algeneralises the well kmown clacs
MV [a,k] (See Definition (1.1.33)) consisting of functions
having bounded Mocanu variation intrcduced by Coonce and
Ziegler and also unifies several other subclasses of H, 4An
integral representation for f € MV [a,k,a] is derived and a
few other interesting properties of this class are

investigated.
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The classes Rg( €) and Ca( €) generalise the classes RZ
and C_ respectively introduced by Jankovics (See
Definitions (1.1,51) and (1.1.52)). Representation and
distortion theorems are obtained. Also properties of inclusion

and univalence have been investigated,

The fourth chapter deals with the study of some radius

of convexity problems associated with certain subclasses of H,

In the first section the following class of functions are
introduced., TLet f,g,h be functions belonging to the clagcs H.

The class ’R}r consists of functions f satisfying the condition
T ST : .

S | Re zzf'(z)/g(z)h(z)l a6 < km, k > 2, z = ret? ¢ E. The

0

2

radius of convexity of ¢he class Ry is determined in each of

the following cases.

(i) when g is starlike of order B and h is convex,
(ii) when g and h are both convex
(iii) when g and h satisfy Re [2(z)/z ]> O, Re[ h(z)/2] > O
for z € E.

Coefficient estimates for f € Rk’ distortion theorens
and the Hardy classes to which function in this class belong

have also been obtained,



In the second section the radius of convexity is determined

for functions defined by certain integral forms involving

functions belonging to the class P.
.z B . »
Let F(z) = J (p(t))" (£'(t)) dt where f(t) is convex
o)

and B > 0, V"> 1. The radius of convexity is determined in

each of the following cases .

.

(1) pe B, (ii) pe P¥ (ii1) pe P [a] (iv) p € P(a)

(See Definition (1.1.7)). )





