
INTRODUCTION A:m PRELIMIPARIES 

A region in the complex plane denoted by fV is an open 

connected set. A function f regular in a region D is called 

p-valent if no value of the function is taken ~ore than 

p times in D and if atleast one value of the function is 

taken exactly p times. When p is tmi ty the function is said 

to be univalent or schlicht in D. In this case, f never 

takes in D the same value more than once, that is, 

f(z
1

) I f(z
2
), z

1 
I z
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, z

1
, z2 8 D. By the celebrated Riemann 

r1apping theorem which states that there exists a holomorphic 

univalent ftmction mapping an arbitrary simply connected 

region in ~ other than the vn1ole plane (that is, having 

atleast one boundary point ) onto the tmit disc, given any 

sinply connected rer:ion D in CJ and a tmivalent analytic 

function defined on D we can always associate with it, one 

defined in the unit disc. Thus the u..."l.i t disc can be taken 

as the domain of investigation of univalent functions. Further, 

if f is univalent in D then so is the function F defined by 

F(z) ~ (f(z) - f(O)) / f'(O), since the derivative of a 

univalent function does not vanish in D. This observation is 

used to nonnalise the function f by the condition f(O)~o; f' ( 0)=1 



and as euch, any property of f can be ~~ediately translated 

to the corresponding property of F. Therefore without loss 

of generality the study of univalent functions can be confined 

to the study of the normalised class of univ2lent functions 

regular in the unit disc. The introduction of the normalised 

class of univalent functions facilitates computations and 

leads to simple, elegant results. Moreover, the normalised 

class is compact in the space of regular functions defined 

in the un~t disc, endowed with the topology of uniform 

convergence in compact subsets. 

The following notations are used throughout the thesis. 

0: denotes the complex -plane, E = ( z : I z I < 1, z 8 «l j the 

open unit disc, H the class of regular functions f(z) in E 

normalised by the conditions f(O) = 0 = f 1 (0)-1 and S the 

subclass of H consisting of univalent fQ~ctions. Let P denote 

the class of regular functions p(z) in E with p(O) = 1 vrhich 

map E into the right half plane characterised by the condition 

Re p(z) > o, z e E. This class plays a very L~portant role 

in the study of univalent functions. The various geometrical 

properties which arise in the study of special regions like 

convex, starlike, close-to-convex, spiral-like and regions 

having bounded boundary rotation can be completely characterised 

by equivalent analytic formulations with the help of the 
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members of the class P. This class is equipped \nth 

interesting representations like Herglotz fo~Llia and 

representation in tenns of u...11.i t functions (regular functions 

bounded by unity in E) whicl;. are given below. First we intl,oduce 

the notion of subordination and state a well knovm lemma. 

-
Definition (1.1.1) .. Subordination (34]. Iff and g are 

analytic in E and g(z) = f(w(z)), vmere w(z) is analytic and 

satisfies lw(z)l ~ lzl in E, then g is said to be subordinate 

to f in E. In symbols we express this ,bY g~ f. When f is 

univalent in E, this is analytically equivalent to the 

statement g(E) cf(E), g(O) = f(O). 

Theorem ( 1.1. 2 2. Schwarz's Le:rrna [34 ] • I1e t f be a holomorphic 

function in the unit di~c and suppose that f(O) = 0 and 

lf(z) I < 1 for lzl < 1. ~hen 

(i) lf(z) I < lzl for lzl < 1, 

(ii) if for z
0 

I 0 the equality !f(z
0

) I 
f(z) = Az where IAI = 1. 

= lz I holds the~ 
0 

Theorem (1.1.31. Herglotz fonnula [44]. The function p 

belongs to p if and only if there exists an increasing 

function Y(t) (- n < t < n) such that - -
n 

p(z) = f 
-n 

--it-
.l+e z . -it .. 
1-e z 

d 1'{ t ) , 't ( n) - Y" ( -n) = 1 • 
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Theo:rem ( 1.1. 4)_ [ 34] • ~he function p belongs to P if and 

only if there exists a function w(z) analytic in E satisfying 

w(O) = 0 and jw(z)l < 1 for z 8 E, such that 

( ) 1+w( z \ p z == .::..L • 
1-w( z) 

Since the function w =-== (1+z)/(1-z) which is a nember of P 

maps the disc E onto the rit;h t half plane Re w > 0, it folloyrs 

immediately from the definition of the class P and the concept 

of subordination that a function p belongs to the class P, if 

and only if p(z)-Z(1+z)/(1-z) on E. This representation for 

members of Pin terms of unit functions motivated Jano,~ki~O] 

to introduce a new class of functions which we denote by P(A,:S). 

Definition (1.1.5) G0]. A function p(z) analytic in E belongs - . 
to the class P(A, B), -1 ~ ]J < A < - 1, if and only if, 

p(z) = ( 1 + Aw( z) ) / ( 1 + Bvr( z) ) , z C E where VI( z) is analytic in E 

with w(O) = 0 and lw( z) I < 1 in E. 

Clearly, the class P( +1, -1) coincides vri th the class P 

and a function p(z) belongs to P(A,B) if and only if, 

p(z)~(1+Az)/(1+B~) in E. Further, since the transformation 

T(z) = (1+Az)/(1+Bz) maps the region lzl ~ r univalently 

onto the disc with centre at (1-ABr2)/(1-B
2

r
2

) and radius 

(A-B)r/(1-B2r 2 ) we derive the following results. 
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Theorem (1~1.6j. Let p(z) belong to the class P(A,B) where 

-1 5 B <A< 1. Then, for lzl 5 r, we have 

~ < lp(z)l ~ 
1-Br -

l+Ar 
' 1+Br 

' 

( ) I -1r (A-B~r } arg P z S tan tl'7 2 . 2 2;-,1/2 • 
~1-A r ) (1-B r ).J 

Furthermore it is easily seen that P(A,B)C P and for 

other suitable choice of the parameters A and B we obtain 

several well known interesting subclasses of P. We list some 

of them and state some relations existing between them (See[20]). 

Definition (1.1.7). 

(i) Pa = P(1-2a,-1) =(p : Re p( z) > a, z 8 E, o~a<1J 

a 
(ii) P = P(a, -a) = [p : t < P < z) -1 ) I< P < z) + 1) I < a, z8E.O<a<i} 

=lp I p( z)-11 < a, z 8 E, 0 < a 5. 1} (iii)P(a:J;: P(a,O) 

(iv)P(a)= P(1, ~ -1) = (p : lp(z)-al < 1 
a, z 8 E, a > 2 J· 

Remark (1.1.8) • The following relations can be easily 

verified. 

(i) P(A,B) C P 
( 1-A) /( 1-B) 

(iii) P(A,-1) : P( 1-A)/2 

(ii) P(A,B) C P(1,.(i+B)) 

(iv) P(1,B) = P(1/(1+B)). 
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We now proceed to introduce same well known subclasses 

of S which can be defined by simple geometrical properties. 

These classes can be characterised by simple analytic conditions 

involving the members of the class P. These properties and 

other basic properties can be found in [45] • 

Definition (1,1.9)(45]. A function fin His called univalently 

starlike if it maps E univalently onto a region starlike with 

respect to the origin, that is, the point w belongs to f(E) 

implies that the line segment joining the origin and the point 

w entirely belongs to f(E). * We denote by S the class of 

starlike functions with respect to the origin. A function f 

* belongs to S if and only if zf'(z)/f(z) belongs toP. 

Geometrically this condition is equivalent to the fact that 

for a starlike function f, arg f(z) increases monotonically 

as z describes the circle lzl = r, r < 1. 

Definition (1,1.~0) [45]. A function f 8 H is starlike of 

order a, 0 ~a< 1, if Re(zf'(z)/f(z)) >a, z 8 E, and if for 

every e > 0 sufficiently small there is a z
0

, z
0 

8 E for which 
- * .Re ~0 f'(z0)/f(z0 )J< a+ 8. We denote this class by Sa; it is 

* * * * clear that Sa C S and when a = 0 Sa coincides with S • 

* Ihe~rem (1.~1.11) [45]. Let f 8 Sa• Then for lzl = r, r < 1 

(i) Re(zf'(z)/f(z)) ~ (1+(2a-1)r)/(1+r), 

(ii) r/(1+r) 2 (1-a) ~ \f(z) I ~ r/(1-r) 2 (1-a). 
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These bounds are sharp for the function f defined by 
0 

:f 
0 

( z) = z ( 1-8 z) - 2 ( 1-a) , lei = 1. 

* The class Sa was introduced by Robertson [ 45] and has 

been extensively investigated. This class is a special case 

of the more general subclass 
* . 

S (A,B) = [f 8 H ; zf'(z)/f(z) 8 P(A,B), z 8 E} of starlike 

functions introduced by Janowski [20]. We note 

* * * S (1-2a, -1) = Sa· The following special cases of S (A,B), 

* namely S (a, 
* 1 s ( 1, 'M -1), 

-a) in~roduced by Padmanabhan (36], 

(M > ~ ) introduced by Janowski (19] and also 

studied by Singh [54] , are of considerable interest. 

Definition (1.1.2) [4~ .. A function fin His convex univalent 

if it maps E univalently onto a convex region, that is, 

w1 ,w2 belongs to f(E) implies the line segment joining w
1 

and 

w2 belongs to f(E) or, equivalently, f(E) is starlike 

with respect to each of its points. We denote by K the class 

o:f eonvex functions in E. A function f is a member of K if 

and only if the function p defined by p(z) = (1+zf" (z)/f' (z)) 

z 8 E is a member of P. Geometrically this means that the 
iO 

function w = f(re ) maps each circle lzl = r, r < 1 onto a 

simple closed contour Whose tangent rotates in the counter 

clockwise direction as arg z = e increases when z describes 

the circle lzl = r. It is easily seen that f 8 K if and 

* only if zf' 8 S • 
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Definit~on (1.tl3) (45] • A function f 8 H is convex of order 

~' (0 ~ ~ < 1), if Be(1+zf" (z)/f'(z)) > ~' z 8 E, and if for 

every 8 > 0 sufficiently small there is a z , z 8 E for 
0 0 

which R e ( 1 + z f " ( z ) ) / f ' ( z ) < ~ + 8 • 
0 0 0 

If K~ denotes this 

class it is clear that K~ C K and K
0 

; K. 

Theorem (1,1.14)(45].Let f 8 K~. Then for lzl = r, 

((1+r) 2~-~~(2~-1) ~ lf(z) I ~ (1-(1-r) 2~-1 )/(2~-1). 
These bounds are sharp. 

Th~orem (1.1.15)(56] • Let f 8 K. 
- 1 

Re(zf'(z)/f(z') > 2- and Re(f(z)/z)> 

Then f satisfies 
-1 2 , z 8 E. Consequently, 

for I zl = r, 

I -1 
"&( zf ' ( z) z) ) ~ ( 1 + r ) and 

larg(f(z)/z) I~ arc Sin r. 

-1 These bounds are attained by the function z(1+z) • 

Definit~on (1.1.16) [52]-A function f 8 His said to be close­

* to-convex if there exists a functioli g 8 S and a real 

number~' 1~1 < ~ such that Re(ei¢zf-'(z)/g(z)) > 0, ~ 8 E. 
i(, 

We denote this class by c. The above inequality is equivalent 

to Re(ei¢f'(z)/h(z)) > 0, z 8 E where h 8 K. Also f 8 C if 
62 

and only if J Re(1+zf" (z)/f'(z))de >- 1t whenever 
e1 

iS 
0 < 6

1 
< 6

2 
~ 61+2n and f'(z) I= 0 for z = re. and r < 1. 
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Close-to-convex functions were introduced by Kaplan [23]. 

The above definition gives a nonnalised subclass of this class. 
-

Theorem (1.1.17) [52]. * KC S C C C S. 

Definition (1.1.18) [25]. f is said to be close-to-convex 

* of order a and t~~e ~' if_there exists a function g 8 S~ and 

a real number ¢ , f ¢ I < ~ such that Re( ei/> zf' ( z)/g( z)) > a:, 

z 8 E, 0 < a < 1. If C(a,~) denotes this class it is clear 

that C(O,O) ; c. 

Mocanu [ 33 ] unified the classes of starlike functions 

and convex fr1.nctions and introduced a fascinating class of 

functions known as a-convex functions. We denote this class 

by M(a). 

Definition (1.1,19_)[33J.A function f 8 H with f(z) f'(z)/z I 0 

for z 8 E belongs to H(a) if and only if 

Re[a(1+z f" (z) ) + (1-a) z f' (z)] > 0, z 8 E, 
f' (z) f(z) 

where a is any real n!.IDlber. For re2l a:, a-convex functions 

are known to be starlike univalent [ 30] , • 

This concept of unifying the existing classes ot an1va1ent 

functions attracted many researchers and several new classes 

have been introduced. 

~efinition (1.1,20)[8].Let N(a) denote the class of functions 



:10: 

f B H satisfying the condition 

- -
Pe((1-o:) zf' ( z) + a ~(.;;;.;zf=-'....lo.(-=z~) )__:.] > o, z C E, 

g(z) g'(z) 

* where g e S and a is a. non-negative real number. It has been 

shown (8] that functions in N(o:) are all close-to-convex. 

In 1959, Sakaguchi [51] introduced a subclass of close-

to-convex functions whose members are starlike with respect 

to symmetric points. We denote this class by s*. The 
s 

interesting geometrical feature possessed by these functions 

is revealed in the following definition, 

Definition (1.1,21) ( 51].Let f be analytic in E and suppose 

that for every r -> 1 (r < 1) and every z on lzl = r the 
0 

angular velocity of f(z) about the point f(-z
0

) is positive 

at z = z as z traverses the circle jzj = r in the positive 
0 

direction, that is 

In this case f is called starlike with respect to symmetric 

points. 

Theorem (1,1.22) ~1)·A necessary and sufficient condition 

for f e H to be univalent and starlike vtith re$pect to 

symmetric points in E is that, 

Re (zf'(z)t{f(z)-f(-z)))> O, z BE. 
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Remarks (1,1.23). The above condition implies that the vector 

f(z)-f(-z) turns continuously in one direction as z describes 

each circle lzl = r < 1. * It is also evident that the class Ss 

includes the classes of convex functions and odd functions 

starlike with respect to origin and is contained in the class· 

of close-to-convex functions. 

Theorem (1.1.24) [46]. Let the function (1-t)f(z) + tf(-z) 

, be subordinate to the univalent, analytic function 

f(z) = z + r anzn in E for an interval 0 ~ t ~ t
0

• Then f is 
2 

starlike with respect to symmetric points in E. 

Recently Das and Singh [ 11] extended the results of 

Sakaguchi to other classes of functions with respect to 

symmetric points in E. 

Definition ( 1.1. 25) [11]. A function f 8 H is said to be convex 

with respect to symmetric points in E if for every r -> 1(r < 1) 

and every z on lzl = r 
0 

Re [z(zf'(z))'/(zf'(z)+z f'(-z ))] > 0 for z = z, lz
0

l=r. 
0 0 0 

We denote by K the class of convex functions with respect to s 
symmetric points. 

Theorem (1.1.26) (11].A necessary and sufficient condition 

for f e H to be univalent and convex with respect to symmetric 

points in E is that, 
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Re[ (zf'(z))'/(f(z)-f(-z))•]·> 0, z 8 E. 

It immediately follows that f 8 K if ana only if 
s 

* zf'(z) 8 S . s 

Definition (1.1.27) [11].A function f 8 His said to be 

close-to-convex with respect to symmetric points if there 

* exists a function g 8 S such that s 

Re [zf'(z)/~(z)-g(-z))] > 0, z 8 E. 

We denote the class of close-to-convex functions with respect 

to symmetric points by Cs. 

The class C(a,~) introduced by Libera (See Definition 

(1.1.18) induced Bharati [5 ] to introduce the following class. 

Definition (1.1,281_[5 ]-Let L(A,B)- denote the class of functions 

f e H satisfying the condition z2f~-(z)/g(z)h(z) 8 P(A,B) 

where g,h 8 H and are subjected to the following conditions 

* (i) g 8 S~ and h 8 K (ii) g, h 8 K and (iii) g and h 

satisfy Re(g{z)/z) > 0, Re(h(z)/z) > 0 for z 8 E. If 
* -g 8 S~ and h(z) = z we note that L(A,B)C C(O,~). 

Next we list a few subclasses of H which generalise the 

classes of starlike and convex functions but are not 

necessarily univalent. These functions also possess nice 

geometrical properties. 
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Definition (1,1.29) ( 29].For k > 2, let Vk denote the class 

of functions f 8 H that are locally univalent in E and map E 

onto a region with boundary rotation atmost kTI, Analytically 

this is equivalent to the condition, 

21t 

£ 
iB · iB · iS 

IRe ( 1 + r e f " ( r e ) If ' ( r e ) ) I de < kn, 0 ~ r < 1. 

Vk is the class of functions of boundary rotation bounded 

by kn. 

Remarks (1.1,30). If the boundary of a simply connected 

domain D has a continuous tangent at each of its points, 

the boundary rotation of D is the total variation, for a 

full turn, of the angle of direction of the tangent to D, 

v2 coincides with the class of convex functions and 

Paatero [ 35] has shown that ~ll functions in Vk' k=2,3,4 are 

also in S. However for k > 4 through counter examples it 

can be shown that there are fnnctions in ITk th2.t are not in S. 

The basic properties of Vk can be ~ound in [29], [24] and [35]. 

Definition ( 1.1. 31") • Css ]. Let Uk denote the class of functions 

f 8 H with f(z)lz f. 0 in E and satisfying the condition 

2~ iB iS iS J I R e ( r e f ' ( r e ) If ( r e ) ) I de < kn, 0 < r < 1 • - -0 

The class ~ is known as the class of functions of argument 

rotation bounded by kn. 
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Remarks (1,1.32). Geometrically the above condition means 

that, the total variation of the angle which the radius vector 

f(rei
9

) makes with the positive real axis is bounded by 

kn as z = rei 9 describes the circle lzl = r for each r < 1, 

* We note that u2 = S , but for k > 2 the class Uk in general 

does not consist of univalent functions. From (1.1.29) 

and (1.1,31) it is clear that f e Vk if and only if zf' e uk. 

Coonce and Ziegler (10) unified these classes and 

introduced the class of functions with bounded Mocanu Variation. 

Definition ( 1 .1,33)(10].Let MV(~,k] (~ e JR, k ~ 2) denote the 

class of functions with bounded Mocanu variation, that is, 
-

the subclass of functions f e H vdth f'(z)f(z)/z I 0 in E 

and satisfying the condition 

2n i9 · i9 · 9 i e · · e · e J 1Re((1-~)re f' (I;'e )/f(re1 )+~(1+re f" (re1 )/f' (re1 )ll\ 
0 

de < kn 0 < r < 1. - , -
Remarks (1.1.34). A geometric interpretation of the abo7e 

condition may be given as f ollm'.'S : Let C denote the i1:1age 
r 

of the circle lzl = r under the mapping w = f(z). Then 

¢= arg f(z) is the argument of the radius vector from the 

origin w = 0 tow= f(z) and~= arg(izf'(z)) is the 

argument of the t~ngent to Cr at w = f(rei
8

) with direction 

detennined by that of increasing 8. The angle 1- =( 1-~)¢+~ "( · 
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is called the Mocanu angle. If we set 

J(a,f) = (1-a)zf'(z)/f(z) + a(1+zf" (z)/f'(z)) it can be 

shown that h = Re J(a,f) (see [10] ). Thus f 8 MV[a,k] 
ae 

if and only if the total variation of the Mocanu angle y is 

bounded by kn. It is easy to see that :rvrv [a, 2] :::. T-.1( a) the 

class of a-convex functions. (See Definition (1.1.19)). 

Theorem ( 1.1. 35) • Jack's Lemma [17 ]. Let d > 0 and 

w( z) . I zl < d -> (t be analytic, non-constant with w(O) = o. . 
If ~~ attains its maximum on the circle lzl = r < d at zo' 

then there exists m > 1 so that z w' ( z ) = mw(z ). - 0 0 0 

Next we proceed to mention Goluzin's method for finding 

the solution of extremal problems for the classes of functions 

which have an integral representation. 

Let E denote the class of regular functions having the 
g 

representation J g(z,t) da(t), ·where g is a fixed function 
-n 

of two variables z and t for z 8 E "'no for each t in(-n, n] 

and a(t) runs through all possible nondecreasing functions 
1t 

in -n < t < n subject to the condition f da(t) = 1. By a - - -n 

Suitable variation of the function a(t) Goluzin has given 

two types of variations for functions in Eg. We state 

the two variational fo~ulas proposed by Goluzin (15] • 
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Theorem (1.1.36) [15].Let f 8 Eg, t 1 ,t
2 

be given with 

- n < t 1 < t 2 <nand let~. be any number in [-1,1]. Then 

there exists a real constant C independent of ~and t such 

that the functions f* defined by 
t2 .. 

f*(z) == f(z) +'}.I ag(z,t) I a(t)- cl dt, z 8 E, 
t 1 at 

are also in Fg. 

Theorem (1.1.37) [15].Let f 8 Eg and t 1 and t 2 with 

- n ~ t 1 < t 2 < n be two jump points for the function a(t). 

Then there exists a number~> 0 such that for all "in 

(--,, '>1 ), the functions f** defined by 

are also in E • 
g 

Remarks (1.1.38)-Goluzin [15] has solved certain extremal 

* problems in the class P and S with the help of these 

variational formulas. This method has been adopted by 

Pinchuk ([40],[41]) to solve extreme problens for starlike 

and convex functions of order a and also for close-to-convex 

functions. 

We next state some results concerning the Hardy class 

of same univalent functions and their derivatives. 

Definition (1.1.39) [13]•For p > o, a function f C H is said 
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27t 
to belong to the Hardy class Hp if lL~ f jf(rei8) jP d8 

r-1 o 

exists and is finite. 

:rheorem .(1.1~4Q) [27 ].If f is univalent then f 8 Hp for all 

1 
p < 2 . 

- p/ 
Theorem (1.1.41) U3].If f' 8 Hp (0 < p < 1) then f 8 H 1-P. 

Theorem !1.1.42)[13]-If q 8 P then q 8 HP foT all p < 1. 

Theorem < 1 • 1 • 4 3) [141.( i) * If g e sa then g e Hp for all 

p < 1/2(1-a) and g' e HP for all p < 1/(3-2a). 

* I gt( z) ( 1 it) 2a-2 ( ii) If g 8 sa and g( z) = az _-ze where t is 

real and a i~ complex then there exists an 8 = 8(g) such that 

1/2(1-a)+e -- 1/(3-2a)+e 
g e H . and g' € H • 

Theorem (1.1.4UU4].(i) If he K then h-, 8 HP for all p ( 1 
2 

and h e Hp for all p < 1. 
z 1 

(ii) If he K and h(z) I ht(z) = J gt(w)w- dw where gt(z) 
0 

is defined above then there exists an 8 = e(h) such that 
1 +8 

h' 8 H ~ and h 8 If+8 • 

We require the intesral representation of a hyper-

geomatric function which plays a useful role in several 

branches of mathematics. The properties of the hyper-

geometric series and the associated function can be found 

in [ 64] • 
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Definition (1.1.45) [64] • The series 

F(a A ~· ) = 1+ ~ a(a+1)S(§+1) 2 ,t-', 1 ,z , z+ _ z + ••• 
YC't +1) 2! 

is called a hyper-geometric series. This series defines a 

function analytic in E. It is also analytic and single valued 

throughout the cut-plane having a cut from +1 to + ~ along 

the real axis. The integral representation of the function 

is given by 

where R e "t > "R e (3 > 0 • 

The conjecture of '9•olya and Schoenberg [ 43] regarding 

the convolution of convex functionsled to the study of 

convolution properties of several subclasses of S and discovery 

of new classes of analytic functions (See [57] , [ 47] , [ 48] , [1] ) • 

We need the following classes. 

Definition (1.1.46)•Convolution of analytic functions. Let 

oo n 
f, g e H where f(z) = z + t a z and g(z) = 

n=2 n 
z + 

~ 

Then (f * g)(z) = f(z) * g(z)= z + t 
n=2 

n 
a b z is called the 

n n 

Hadamard product or convolution of f and g. 
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This product is commutative, associative and distributive 

with respect to addition in H. Other properties of convolution 

used in the thesis are stated at appropriate places. 
- - -

Definition ( 1, 1. 47)[ 49]. A function f analytic in E normalised 

by f(O) = 0, f'(O) f 0 is Called prestarlike of order a, a~ 1 

if and only if 

* where sa 

a, a S 1. 

-- -1 
Re(f(z)/zf'(O)) > 2 , z 8 E, for a= 1, 

z(1-z)-2 (1-a)* f(z) 8 s: , z 8 E, for a < 1; 

denotes the class of all starlike functions of order 

* We denote by La the class of prestarlike functions 

of ~rder a, 

* * * * * Theorem (1.1.48) [49 ].L
0 

:: K, L1; 2 :.: s1/ 2 and L~ C La whenever 

~ ~ a ~ 1. 

Definition (1,1,49) [53].Let .n_ : H -> H be a continuous 

linear operator. Then .f)_. is called a convcxi ty preserving 

operator if for each f 8 H the range of values of JLf lies 

in the closed convex hull of the range of f. 

* * Theorem (1.1,50) [ 49 ].Let f 8 La' g 8 Sa and F 8 H , Then 

JlF = (f * gF)/(f * g) is a convexity preserving convolution 

operator. 
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We next introduce a class of functions studied in [18] 

which unifies several 'l:vell knovm classes. 

Let Ka(z) = z(1-z)-a, a e ~with Rea > 0, where a 

suitable branch is chosen so that Ka 8 H. Let f 8 H be given 
00 

by f(z) = z + t 
n=2 

n 
a z , where a t 0 for all n and n n 

lim I an 11/n = 1. 
n-+oo 

-1 Then, we denote ~y f the unique well 

-1 
defined function in H £or which f - * f = K1 • 

Definition (1.1.51) [18]. Let R~(a > 0, a > 0) denote the class 

of functions f 8 H such that 

1K * f) ("z} - (Ka+1* f) ( z) 
Re{.a(a+1)[ ::J+2 - ~] + (1-a) a[ - a-1]}> 0 

(Ka+1* f)(z) (Ra* f)(z) 2a 

where (Ka * f) ( z)/z t 0 -:-.nd (Ka+1 * f)( z)/z f. 0 for z e E. 

Definition (1.1.52) [18].Let Ca(a > 0) denote the class of 

functions f e H such that 
9

2 (K * f)(z) J Re[-a;;;.;+~2:__ __ - 1 ] dS > 
91 (Ka+1* f)(z) 2 

- 7t 
a+1 

·where 0 s. 91 < 92 s 91+27t, z = 

(Ka+t* f)(z)/z ~ 0 for z 8 E. 

ie 
re , r < 1 and 

;Remarks (1.1.53). When a= 1, the class R~ coincides with 

the class M(a) of a-convex functions (See Definition (1.1.19)) 

and ca reduces to the normalised class of close-to-convex 
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functions (see Definition (1.116)). 

q:'heorem ( 1.1. 54) ( 18]. VIe have the following relations. 

(i) R! C R~+1 
(ii) feR~ if and on1.y if Ka* f 8 s(1-a)/2 

(iii) f 8 R! if and only if Ka+ 1* f 8 s(1-a)/2 

(iv) f 8 R! if and only if K;
1 * (Ka+1* f) 8 R~ • 

It is easily seen that (iv) generalises the well knovm 

* result, namely, f 8 K if and only if zf' 8 S • 

-

Theorem (1.1.§Ql118].f 8 Ca if and only if there exists a 

function g 8 R1 such that a 

Re[ 
(Ka+ 1 * f) (z)] > o, z e E. 

(Ka+1 * g) ( z) 

When a = 1, this reduces to a well kno"vn result due to 

Kaplan. 

Theorem (1.1.56) [18]•We haveR~ cR~ C Ca cCb for 0 ~ o: ~ ~' 
0 < b < a, a ~ 1 and the functions in R~ and Ca are close-to­

convex and hence univalent. 

a o 
This theorem generalises the result R1 c R1 for 

a > 0 [30] . 
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In this section we give a brief outline of the sL~bj ect 

matter of the thesis. This thesis aims at definin~ and 

studying some new classes of functions analytic in the unit 

disc with special attention to the properties of univalence, 

representation and distortion theorems connected with then 

and their invariance under integral operators. In view of the 

fact that the study of univalent functions provides an 

interesting link between geometry and analysis, wherever possible, 

geometric interpretation of the analytic condition defining a 

new class has been furnished. The classes introduced in this 

thesis are e1ther new subclasses of well known classes or 

they unify and generalis~ some of the existing classes Whose 

definitions and important properties are outlined in the 

earlier section of this chapter. 

The second chapter is devoted to the study of the class s* s 

of functions starlike vvith respect to s:ynunetric points (See 

Definition (1.1.21)) and related classes of functions. We 

* introduce and study some important subclasses of the class Ss• 

We ·say a function f e H is a member of the class 
* -S (A,B) (-1 ~ B <A< 1) if and only if 2zf'(z)/~(z)-f(-z)) 
s -

is subordinate to the f~~ction (1+Az)/(1+Bz) in E. Clearly 



* * * Ss(A,B) CSs(1,-1) :: Ss and by giving suitable values for A 

* and B several interesting subclasses of Ss can be realized 

as special cases. Certain properties like coefficient 

estimates, region of convexity and distortion theorems have 

* been studied for the claRs S (A,B). 
s 

We say a fllnction f e H is strongly starlike of order a 

with respect to symmetric points if and only if 

larg [zf' (z)/(t'(z)-f(-z)]l j < a ..!: ' 0 < a < 1, z e E. If 
2 -

* [a] denotes this class ss it is easily seen that 

*[] *-] * Ss a CSs l1 = Ss. The effect of the integral transform 

given by I(f) = (c+1)z-c f tc-1 f(t)dt where c 8 ~and f 8 s; 
0 

has been investigated. Representation and distortion theorems 

have also been derived for this class. 

The classes of a-convex functions and a-close-to-convex 

functions with respect to symmetric points have also been 

introduced and studied. An extremal preble~ of a general 

* nature has been solved for the cla~3 Ss using Goluzin's 

variational methods. 

In the third chapter convolution properties have been 

used to define three new classes of analytic functions in E. 

Let 
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J(o:,f,a) 
(K * f)(~} . {K *f)(~) 

= o:(a+1) ( a+2 - ~]+(1-a)a[ a+1 -- - ~ l 
(K 1* f)(z) a+1 (K * f)(z) a a+ a 

where K (z) = z(1~z)-a, a > 0 and a ~ 0. 
a 

We introduce the following classes of functions. 

(i) f 8 MV[o:,k,a] (a> 0, k ~ 2) if and only if f 8 H, 

(Ka* f)(z)/z! O, (Ka+1* f)(z)/z I 0 for z 8 E and 

2~ · ie · 
fIRe J(a,f,a)j de< kn, z=re 8 E. 

0 -

(ii) 
a 

f 8 Ra(f) (a> o, f'< 1) if and only iff 8 H and 

Re J(a,f,a) > p, z 8 E. 

(iii) f 8 Ca (f.') ( e< 1) if and only if f 8 H, (Ka+1 * f) (z)/z pO 

for z 8 E and 

~ i8 
f Re tJ(1,f,a)-fJd9 >- n, z = re , 0 ~ r < 1, 91 < 92 • 

81 

The class MV [ a, k, a] generalises t 11e well 1movm class 

MV [o:,k] (See Definition (1.1.33)) consisting of functions 

having bounded Hocanu variation intrcduced by Coonce and 

Ziegler and also unifies several other subclasses of H. An 

integral representation for f 8 l:IV [a,k,a] is derived and a 

few other interesting properties of this class are 

investigated. 
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a 
The classes R ( f') and C ( f') generalise the classes Ra 

a a a 
and Ca respectively introduced by Jank:ovics (See 

Definitions (1.1.51) and (1.1.52)). Represent~tion and 

distortion theorems are obtained. Also properties of inclusion 

and univalence have been investigated. 

The fourth chapter deals with the study of some radius 

of convexity problems associated with certain subclasses of H. 

In the first section the following class of functions are 

introduced. Let f, g,h be functions belonging to the cle.ss H. 

The class Rk consists of functions f satisfying the condition 
2j I Re z2i' (-.z)/g(z)h(z) I d8 < kn, k > 2, z = reie e E. J:he - -0 

radius of convexity of ~he class Rk is determined in each of 

the following cases. 

(i) when g is starlike of order ~ and h is convex, 

(ii) when g and h are both convex 

(iii) when g and h satisfy Re [g(z)/z ]> 0, Re[ h(z)/z] > 0 

for z e E. 

Coefficient estimates for f 8 Rk' distortion theorems 

and the Hardy classes to which function in this class belOllg 

have also been obtained. 



In the second section the radius of convexity is determined 

for functions defined by certain integral forms involving 

functions belonging to the class P. 

z ~ ~ 
Let F(z) = J (p(t)) (f'(t)Y dt where f(t) is convex 

0 

and ~ > 0, ~> 1. The radius of convexity is deter.mined in - -
each of the following cases : 

(i) p e Po: (ii) p e Po: (iii) p e P [a] (iv) p e P(a) 

(See Definition (1.1.7)). 




