CHAFPTER O

INTRODUCTIORN

0.1. The concept of weighing designs and the origin of the

weighing problem

The concept of weighing designs éan be made very clear
with the help of the following éxample: Lét_there be two
objects with weights pl ana BZ , respectively, which are
to be estimated'witﬁ the help of a chemical balence that is
free from any oias. Let the variance of an individual weigh-
ing be 62. I{ the two objects are weighed together on one
pan of the balance, and then, on opposite pans, the ‘equations

for estimating the unknown weights Bl and Bz will be
Pr+ B2 =7y
By = B2 =Y5 »
where, Y and y, are the corresponding readings from the
scale. Thus, the estimates of the weights are (y1+y2)/2
. and (yl-yz)/2. The variances of these estimates will each
be 02/? which is half the value of the variance when the
two objeéts are weighed individually. The mean of the esti-
mates of each weight, found from n pairs of Weighings of

sums and ditfferences wili have variance 02/2n, whereas,

the number of pairs of weighings of the objects individually



will have to be 2n to give the same precision to the aver-

age estimated weight.

Thus, it is clear that, when measurements have to be
'made on several quantifies; greater precision in estimating
the measurements is possible when thé'measurements are made

on sets of objects rather than on individuals.

The problem of weighing a number of objects may be re-
garded as the problem of the estimation of the effects of

a number of factors which do not interact.

The ‘weighing problem', i.e., the problem of determin-
ing the weights of several objects by wgighing them in suit-
able combinations, took its origin in thé'fbllowing casual
illustration furnished by Yates (1935): A chemist has seven
liéht objects to weigh, and the scale also requires a zero
correction. The obvibus technique is to weigh each of the
~seven objects separately and to make an eighth.weighihg'with
no object on the scale so that the zero correction can be
determined. Thus, the weight of each object will be deter-
mined as the difference between the readings of the scale
when carrying that object ahq when empty. .If the standard
-error of each weigh;ng is deﬁoted»by' g (aasﬁming that
systematic errors are non—exiipont and that the errofé are

| T , ‘
random), then, the variance of each estimated weight will

i



work out to 20°,

2

Yates (1935) suggested an improvement over this custom-

ary technique. This improved technique consists of weighing

all the seven objects together and also weighing them in

groups of three so chosen that each object is weighed four

times altogether, twice with any other object and twice with-'

out it. Denoting the unknown weights of the objects as Bl ’

Bas oo

37 y and the readings from the scale as Y1 2 Y5

coey Yg 9 the equations for determining the unknown weights

according to the scheme proposed by Yates are as follows:

’Bl + Bz + B3 + 34'+ p5 + B6 + ﬁ7

By + By + By
B ~ + By + Ps
By . *+PBst Py
Ba +By . *+Bs
Ba + Ps *+ By
By + By + By

53 .t 35 + ﬁ5

The weight [, is determined as

B

Yy + Yo+ ¥y + ¥y = ¥5 = Fg = ¥7 = Vg

P

(0.1;1)»

(0.1.2)

Similar expressions can be obtained for the other weights.



As the variance of a sum of ingependent observations is the
sum of the variances; the variance of the estimated weight
B, is, from (0.1.2), 80%/16= 0%/2, which is only one
fourth that obtained by the direct method. Thus, the im-
'provéd technique has halved the sfandard error of each esti-
@ated weight. To get the standard error of each estimated
wéight aé. G/Q@? by the direct method, one'has to revneat the
eight Qeighings, i.e., one for each object and one with no

" object, four timeé and take the average of the fouvr esti-
métes thus obtained. Thus, if a certain degree of accuracy
is required, celling for repetition of the weighings by the
direci method a certain number of times, only onc fourth as
many weighings will be'néeded by Yates' 1..ethod to procure

the same accuracy in the average.

A fufther improvement in the wéighing technique for the
above probiem was suggested by Hoteliing (1944) who modified
Yates' procedure to include on the other pan of the bglance
" those objects that are not weighed. Calling the readings
from the scule now as yl' ’ y2' ;_..., ys' , the eguations

similar to (0.1.1) becoms



By + By + B3+ By + Bg + Bg + By
By+Pp+PBy-By-PBg-PBg-By = ¥,
By =By =P3+By+Bs-Bg-Py = ¥y
By -PBy -B3-By “Bs +Bg+ By = ¥,
- Bi.+fbg - B3 + 94 = 35'* Pe = By = ¥g'
~PBy#PBy=PBy-Py+PBs-Bsg+By = '
“01‘32"’(33*(34“95 '36""»..7."""= yq' S
" PPyt Py By By v B - by = Vgt (013

"In this oase, ‘some. of the - yi may be nggatiio. Ih Yates'

fl
~
=

mothod, the objeots are alwayq,put'on one pan and the weights
(known) afa addpd %o the othr'pSn to.ba;ancé the'two’pahé;
The weight added to the sther pan'ih‘fhé ith weighing
,oporatioh is y, . In Hotelling's method, when oertnin ob-
Jeots arp put on one pan, and all the others, on the other
_pan, the weight addod to éither pan to maintain balance is -
recorded positive only when it is added to the ‘other' pan.
Otherwisa, it is recorded aa negative. Thus, the yi' may
vjbe positive or negative. From (0. 1. 3), the aatimate of Bl_vi

'il obtainad as

A y 'y "+ ¥yt y PR AL LS Y. = ¥ )
By =~ - ‘vyz _ 24 5 5% "Y1 78 , (0.1.4)

S

with similar expre%siOns for the other unknowna. Theivarianoii

of each esti Fted weight by this method is 02/8. thus, the



standard error of the estimute is hulf that obtained by Yates!
method. Here, the number of fepetitions required to procure
a particular standard error in the mean is one sixteenth that

required by the direct method.

Such improveménts in the technique of measurements can
also be apnlied to other types of measurements as of distances,
iéngths;voltages and resistunces, concentrations of chemicals
in solutions, in fact, any meusurement in which the measure
of a combinition is. a known linear function of the separate
measures with numerically equal coefficients. However, for
the sake of simplicity, the problem will be discussed in the
language of weighing operations. PFurther, it is quite reason-
able to assume that the recorded results of weighing opera-
tions will bebindependent of each other and that they will

have the same standard error.

In the above example, O was assumed to be known,
whereas, in actual practice, the value of 0 may be unknown
and it may be necessary to find an estimate of T from the
recorded results. Getting the estimate of O from the re-
sults of the experiment may be more satisfactory since the
value of 0 will then refer to the actual expefiment rather
ihan to some previous experiments which might not have been

made under exactly the same conditions. But, in order to



huve such an estimate of 0 , it is necessary that the number
of observations exceeds the number of unknowns and desirable
that the excess .a'hall be largmepough to ensure a stable

‘sstimate of 0 . .

0.2, - The rtatistical model for the weighing problem

The results of n weighing operations to determine the
individuél weights of p objects on a chemical balance with
gero bias fit into the linear model

y= xg + e B ‘ (0.2.1”)

where, X = ((;ij)) i=1, 2, eeey ny, =1, 2 ceer Py is
an nxp matrix of elements Xgq = +1, -1 or O according as
in the ith weighing operation the jth object is placed, res-
peotively, on the left pan, right pan or nones y is the

n X1 observed vector of the recorded results of the weigh-
ings; B isa pxl voo.tor representing the unkncwn weights
of the p objects; e is an nXx1 " unobserved random veotor,
~'auol‘1“that E(g) - 0‘ and "'B(eo'.) = 0’21 wheré B standé for
. Exvectation, e' 1is the transpose of e and I, is the
nﬁx'n identity matrix. In order to astimate the unknovm
weights from the reaultu of the n weighing Operations it
ia neoeasary that nap when the balanoe is troe from bias.

I.f the balance has bias, then, to estimate the ..b.a.&l and the



unknown weighte, it 'is nace-aary that txz(p+1) The bias
.can always be regarded as yet another unknown weight to be
estimated. Taking the bias to be the first object, the

- elements xii will each be unity fof, i}= 1, 2, ...;‘n,

i.e., the matrix 'x will have its first column as & column
'of unities when the balance has a bias that is to be nsti-
mated. X represents the. deeign matrix and is called the
weighing design. The rows of X represent the weighing

- operations éhd ?hé columus repbesent the objécta whose weighfa
are to be determined. 1In a égring balance problem, the ele-
ments xij can aéaume only the values +1 or 0. Consistent
with the signs that the eleoments xij can take, the record
of the ith weighing is taken as positive or negative accord-
ing as the balancing weight is placed on the right pan or the
left. A spring balance désign can always be regarded as a
caemical balance design with no object placed on the right .

" pan in any of the weighing operations. The spring and éhemi-
~oal bhalance weighing designs afe also called one-pan and
two-pan weighing designs; reepectively. A chemical balance
weighing design is called a strictly chemical balance weigh-

ing design if in cach weighing operation neither pan is empty.
In other woide,»for such designs. X , there will be at least

one +] and at least one -1 in each of the n rows.



. As (0.2.1) represents a linea= model, all the results
pertaining to the general linear model will hold good for
(0.2.1). A detailed account of linea. models can be obtained
from Graybill (1961), Rao (1973) ard Searle (1971). Some of
the .cesults thati are consequeiﬁes of the Gauss-Markoff model
are stated below: when the design matrix X us of full rank,
i.e., of ran’ p . ¥'X will be non-singular and the least-

squares estimates of. the weighis [3 are given by

By, (0.2.2)

where, ()('X)-l gtands for the inverse of the matrix (X‘X).

The variance-cov:..riance matrix of ﬁ is given by -

cov(B) = (xx)7t o2  (0.2.3)

(X'X)™1 .is denoted by C = ( cyyM i=1,2 B
i=1,2, «.., p. The variance of the estima‘ted weight of

the ith object is given by oiicrz. o,. which is the ith

ii
diagonal element of C is known as the variance factor for

the 1ith ohjsect. If 02 is unknown, the unbiased estimate .

of '02 based on fhe least-squares estimafe of B is given by

A ) [} A ' - oL
62 = (y-xB) " (y-x B)/(n-v), (0.2.4)
To derive the estimates of P_ ‘.and. 0'2 as in (0.7.2) and

(0.2.4), no assumption need be made about the form of the
I : ‘

distribhtion'bf the ercor vector 8. But, some such assump-
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tion will be necessary if one wants to use maximum likelihood
estimation. Usually the distribution of e is taken to be

normal.

Soon after the introduction of;the weighing problem by
Yates (i935) and Hotelling (1944), a series of articles on
this subject appeared, some of the early ones being those‘by
Kishen (1945), hao (‘1945). Moéd (1946) .and Placket and Burman
(1946) . A lot of-pionegring work on the weighing problem
has been done b& Banerjee (1948, 1949a, 1949b, 1949c, 19494,
1950a, 1950b, 1950c, 1951, 1952).

0.3. Optimum designe and effigciency criteria

—————

In weighing designs, ome tries to locate if possible, a
design matrix X with which each: i is minimum. When
this is not possible. one has to construet X to suit alter-

native optimality oritqria.

Hotelling (1949) and subsequently Moriguti (1954)
proved that the minimﬁm possible value for each variance -
factor iy ig 1/£ and thus, the minimum variance for each
estimated weight iaf 02/n. '02/n is referred to as the
'minimum minimorum?' . of the varianée of each estimated weight.
The variance ofyeac% estimated‘weight will attain the minimum

minimorum 1f and only if X'X = nIp . A d4sign X for which
T
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XX = nIp will,_therefofe, bé the Eggi or optimum design.
But, ‘such a deéign'does not e£lst for all values of n and
p. Thus, it becomes necessary to choose an optimum weighing
‘desigh for a given situation. Listed below are some effi-
ciency criteria which will be useful in comparing different

;weighing designs.

Criterion 0.3.1. Of two nxp weighing‘désigne Xl and

X, , X, is superior to X, if the variance of each estima-
* ted weight is smailar in'the oaée_of design ,Xl‘ than in the
caeé of design X5y iee., if each diagonal element of -
'(Ii!xl)'l is smaller than the correspohding diagonal ele-

' ment of "(xz'xz)‘l . In some cases, it might so happen that
the variances of some of thé estimates are smaller when X,
is used, whereas,.the,vafiancee'of the other estigates are
gmaller when X2 iSJuaed. Thus, out of two designs xl

and x2 y One may giVe more efficient estimates of some of.

- the weights while the other gives more efficient estimates
of the other weights.

Criterion 0.3.2. xl is supeérior to 12 if the average, of

the variances of the estimated weighta is smaller in fhe'caag'
of X, than in the case of X, - This is kndﬁq,as the Aeggﬁif
‘mality criterion (age Kiefer, 1959). A-optimality. is .also

known as trace-optimality since the criterion reduces to
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X, Dbeing superior to X, if tr(Xl'Xl)-l' is less than
tr(X,'X,)"" , tr(X) standing for the trace of the matrix
X. Thé efficiency of a given nxp design X according to

' the A-optimulity criterion is given by Kishen (1945) as

2
9 /n = P (0.3.1)
2 2_ D s

Criterion 0.3.3. X, 1is superior to X, if |X1'X1| is
greater than |x2'x2| where, |X| stands for the determinant

of X . This eriterion is known as -the D-optimality crite-

rion (see Mood, 1946 and Kiefer, 1959). Note that maximizing
|X'X] amounts to‘miﬁimizing |(X'X)~1' . This ériférion is
bésed on minimizing the generélized vériance 6f the estimated
weights. According to this criterion, the efficiency of a
given nxp design X is |

_Axexl (0.3.2)

max |X'X|

Criterion 0.3.4. X, is superior to X, if the maximum

characteristic root of (Xl'xl)-l is smaller than the maxi-
" mum characteristic root of (xz'xz)’l . Equivaleﬁtly, Xl-
is superior to X2 ifvthe mihimum characteristic root of

(X,'X,) is larger than the minimum characteristic root of

(X,'X,).. This criterion is known as the E-optimality cri-
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terion (see Bhrenfeld, 1955 and Kiefer, 1959). This is
based -on the fact that if c'E ‘is a linear function of the
true weights subject to the condition that c'c = 1, then,
. the maximum value of the variance of E'E for all choices
' . : ’ . 2

of ¢ satisfying c'c =1, is O ¢max_’ where ¢max

_is the max imum characteristic root of (X'X)-l. Here, ﬁ

—

refers to the least-squares estimate of [3 obtained with

the design matrix X . The efficiency of an nxp design

X ©based on this criterion is

® nin (0.3.3)
n ' .

where, ®,in 18 the minimum characteristic root of (x'x).

Criterion 0.3.5. X, is superior to X, "if the 'sum of all

the elemenfs of (xl'xl)‘; is less than the sum of all the
elements of (X,'X,)”'. This criterion is based on the esti-
mation of the'totalrweight'of the p objects. The variance
of the estimated total weight of the p objects obtained
 with anb.h¢<p'»design X is | |
02( aum of all the elements of (X'X)™1)  (0.3.4)

In certain situations, other definitions of best designs

may be preferred. Thus, problems may arise in which one

might prefer.
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. i) to minimize‘the variénoe factors subject to the res-
triction that they be equal, |
1i) to minimize some function of the variance factors or
411) to minimize only a certain subset of the diagonal ‘

. elements of (X'X)"! on & minor of the matrix (X'X)*
ag might bé the case when one wﬁpté only rough esti- '
mates of the weights of some objecté, but more'accu-
rate estimgfee of the.others.

'Gupta and Des (1977)‘have, for instance, intréduced the follow-
ing definition of an optimum é;aign + "Of the class of all
nxp welghing aaeigns, deeigh X 1is said to be optimum if
?he,weight of the ith object is eetimated_with variance G%AHJI
i = i, 2,',;., P, whére n, represents the number of times

. the ith object is included in the n weighing operationé"-

It is obvious that the efficiency of two weighing designs
to-measufe the weights of P 6bjects:can be dompared only .
'ﬁhen they both have the same number of weighing operations.
| Npimally,-one;expects_the efficiénby of a designvtq.impiove«

when the number of weighinglOperatidns increases.

Banerjee (1972) observed that, in the, case of chemicai
balance weighing designs, D- and E- optimality criteria
are equivalent and that in the oase of spring balaﬁcq4weigh-

ing designs}g'D-optimality impliee' E—bpt;ﬁality;
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0.4. Some results on matrix theory

*

The following well known results on matrix algebra
which are used in various Chapters of this Thesis are stated

without proof :

Let Ai be a square matrix of order n, with each of its
diagonal elements as ry @and each of it3 off-diagonal elements
" as Ai yi=1, 2, .0., m; let Fi; be a matrix of dimen-

sion n;x n, with each of its elements as Aij , 1 £ 3,

4,3 =1, 2, .es;m and let Fy; = Ff, . Let
Ay P Py e Py
Py A, F23 RIS

Al) 2; .;o, my' = ¢ L . - PR .o

le ?mz Fm3 eee AL

‘which is a determinant of order N = y n, . Then, the value

i=1
of the above determinant is given by
n
M,2, ..o.om|l = N2 n ngJd (0.4.1)
i=1 % =1
(n,~1)

where, P; = (r, ~ Ai)

1= 1, 2’ ceeey M 3 Aij = Aji and
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Ry Ay Ay e Ay
Aoy Ry Ay e Ay
J = [ 2N ) . e [ 2N J L B BN ) [ 3N ]

o o0 e e o e oe

Aar Ama Apy  eee By

The above'determingnt, which is of order m , may again admit
of a similar reduction. If the weighing design X is such
that X'X = Al 5 ...m ’ there will be m sets of variance

: > ESNEX) Co

factors and, in‘eaéh set,~fhe variance factors will be equal. '

The ng variance factors in the ith. set will be equal to

(n,-1) 3, /(ry-A)n3 (0.4.2)
wﬁére,
R, /\12 _Al3 /\lm
Azl . R2 1\23 IR zm
) Ji = . e e .e R EEEE )
Ay A A13 cooRy .o A
Aml Am2 _Am3 Preneers Ry

with pf = {ri + Ai(ni-g)} /(ni-l) ‘
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Let A = be & partitioned symmetric matrix

such that A and Py are non-singular. Then,

=1 S TS | -1 -1
A = . '
S D B | -1
: | “Fy TPy Fy o Fy (0.4.3)
. . ‘ ' -1 X ) :
where, F4 = F, - F, Fl F2 .

3 2
The following results can be obtained as simple cases

of the above reéults.
if A is a matrix'of the form

(c-d)Ip + d E (00404)

P,Dp

where, c¢ and d are scalars and E is a pyxyp matrix

‘ P,D -
with each element as unity, then, ‘

'A' = (c-d)(p—l) {c+(p—l)d} (0.4.5)

and A~ - (£-g)I, + & B, (0.4.6)
where, : - f = {c+(p—2)d} /(c-d) {c+(p-1)d} (0.4.7)
and g ; -d/(c-d) {c+(p—l)d}. (0.4.8)

Remark If an nxp weighing design X 1is such that X'X
is of the form (0.4.4), then, obviously, X will contain

¢ +1's in each of its columns, i.e., each object is weighed
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(on the 1laft or right panf ¢ times, and the inner product
of any two columns of X will,be d . Such a desigr X .will

‘ensure that

i) the variances of the estimated weights are equal

and ii)‘the estimated weights are equally correlated. (0.4.9)

In fact, the variance factors will each be f given by
(0.4.7) and the covariance between any two estimated weights
will be g given by (0.4.8). If the estimates of the weights
. determined with an nx p design metrix X should satisfy
(0.4.9), then, ‘X must be of the form (0.4.4). Thus,‘ X'X
being of the form (O.4.4)»is a necessary and sufficient con-
dition for the estimates of the weights obtaihed with the

nXp design X to satisfy (0.4.9).

‘0.5. Some well known block designs that can be used to

construct weighing designs

- 1) BIB designs

A balanced incomplete block design (BIPD) is an arrangee

ment of v eleménts (treatments) in b blocks each of sire
A (<v) such that | |
1) every element occurs at most once in a block,
2) every element occurs exactly in r blocks and

3) every pair of elements occurs together in exactly
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A blocks.
v, b, r,4, A are called the purameters of the BIB design

and they satisfy the following relations:

w;f = bh (0.5.1)
A(v=1) = r(f£ -1) (0.5.2)
bzv (0.5.3)

3

If v =b , then, obviously, r =.4 and in this case the BIBD

is called a symmetrical BIBD.

Given a BIBD with parameters v, b, r, .4 , A , its

complementary BIBD is obtained by including in each of the

b kblooks those (v-o4 ) treatments that are not present in
the.oorresponding block of the original BIBD. The comple-
mentary BIBD will have parameters v' =V, b = b; rt* = b-r,
& = v-4, and A = b-2r+'.)t .

ii) PBIB designs

Given v elements 1, 2, ..., v, a relation satisfy-

ing the following conditions is said to be an association

schema with m classes:

1) any two slements are either 1st, °nd .... or mth
associates, the relation of association being
sjmmetrical }

.2) each element has hi‘ ith i-aociatee, the number n,

being independent of the c¢lement chosen
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3) If any two elements are
number of elements that

and kth s&associates Qf

independent of the pair

chosen. v, n,, i=

i, J, k=1, 2,

e ey m,

2y

ith associates, then, the

agssociates of one

are  jth

the other, is pgk and is

of the ith associates

and pgk ’

ey m’

are called the parameters

of the association scheme.

Given an association scheme for v elements, a partially

balanced incomplete block design

(PBIBD) is defined as followa:

If there is an association scheme with m classes with given

parameters, a PBIBD with m
ment of the v elements into b
that
1)ievery element occurs.at
2)
3)

if two elements are

occur together in Ai

being independent of the pair of 1ith associates

' dhosen.
v, b, r, £ ,and Aio i-=
meters of the PBIB design.

foliowing relations:

every element occurs in exaotly

ith associates, then,

associate classes is an arrange-

blocks of size 4 (<v) such.

nost once in a block,
r blocks and
they

blocks, the number Aj;
®

i, 2, «..; m, are called the para-

These parameters satisfy the
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i) vr = bk,
. m _
1) ¥n, = v-1,
i=1

. m ’
iii) oy /\i = r(k-1) ,
Ci=1

oom

£ J j » where 513 =1 if i=j

= 0 otherwise,

In a PBIBD, b ‘and v need not'satisfy (0.5.3).

A detailed account of BIBD and PBIBD can be obtained

from Raghavarao (1971).

iii) BBW designs |

A balanced bipartite weighing design with parameters

v, kp, k,, /\1,' denoted by BBWD (v,}kl,kz, Al) is an arrange-
~ment of v eléments into b blocks By = {Bil 3 Biz} each
with of = (kl-iékz) distinct elements, the nur_nber' of eiements-
in B,3 being kj » §=1,231=1,2 ..., b, such that
each element occurs in r Dblocks, each pair of dietinct ele~
ments is linked in eiactly l\i blocks and n-linked in exactly
A2 blocks (see Huang, 1976). If_ B 1is & blook with subsets
i 2 such that B = {Bl ; Bzv} , where Bl - ‘{all,

B and B
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321, ., alg‘l} ’ 32 = {aig, a'22,- “"’.31:22 } y then, two
elements in B are said to be linked or n-linked in B , if
and only if they belong to different subsefs or the same sub-
set of B , respectively. The‘param‘eters 61‘ a BBWD satisfy

the -fplldwing relations :
i) » = A.lv(v—l)/(Zklkz) ’ "
1) Ay = Ay [k 0g-1) + ky(iepm1) } /(2k,x,) dna
iii) r = AA (v-1)/( 2k k,) (0.5.5)
wﬁere, r represents the number of blocks ivn which each ele-

ment occurs.

iv) Balanced n-ary designs

A balanced n-ary block design is an arrangement of v

treatments (elements) in b blocks of size J& such that
every treatment (élement) is replicated r times and

b . - .
Z'nijnim is a constant, where, n,

ij
i=1 '

is the number of times

the jth treatment occurs in the ith block, i =1, 2, ..,
by j=1, 2, «ee, v , and each nij‘ can take n different
- positive integral values including zero. In particular, the

'n possible values for each n, mey be taken as 0O, 1, 2, |

ij _
sesy (n=1). A BIBD is a special case of an n-ary deaign with -
. R 3 : ;
Ry j taking only the values »O an@ 1l and_ Z ’ni j{nim being

i=?
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equal to A, When n;; can take the three values 0, 1, 2,

the n-ar, design becomes what is known as a ternary design.

For all the block designs mentioned in this Section, the

vincidénce matrix is defined as the bxv matrix N = ( nij))’
where, nij .denotes the number of times the jth element
occurs in the ith block. In the case of BIBD, PBIBD and
BBWD; nyg=1or 0 according as the jth glement'occurs.or '

does not occur in the ith block.

0.6. Chemical balance weighing designé

In a chemical balance weighing design X , the elements
xij ‘can- assume the values +1, -1 or 0. As was pointed out
ia Section 0.3, the nxp weighing désign X for which

X'X = nl willbprovide the minimum variance of Gz/h. for

p " .
each estimated weight. A matrix X satisfying the above
condition will be optimum with respect to Criteria (0.3.1) to
.(0.3.4). Such a matrix can be formed by choosing any p

columns of what is known as a Hadamard matrix. A Hadamard

mafrix Hn of order n is an nth order square matrix with
elements +1 and -1 such that H; Hh = nIrx' A necessary
condition for the existence of a Hadamard matrix. H, is
that ﬁ =2 or n=0 (mod 4). n is called a Hadamard

number if Hn exists. Literature on the methous of
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congtruction of Hadamard matrices, the relation between
Hadamard matrices and BIRD, the applicability of Hadamard
matrices as weighing designs etc.; can be found in Hadamard
(1893), Paley (1933), Williamson (1944), Kishen (1945),

Mood (1946), Placket and Burman (1946), Baumert, Golomb and
Hall (1962) and Hall (1967). A comnrehensive account of
Hédamard'matrices and their applications is now avilable in

Hedayat and Wallis (1978).

When the numbér of weighing operations is not a Hadamard
number, the method of effectively augmenting a Hadamard matrix
with its rows was studied by Kishen (1945) and Mood (1946).

A substéntial coﬁtribution towards this study was made by

Banerjee (1949c).

Wheh n=pand n is not ‘a Hadamard number, Mood (1946)
furnished some D-optimal designs for small values of p . The
construction of optimal designs for the case n =p when n
is not a Hadamard number was studied by Reaghavarao (1959, 1960)
under the conditions given by (0.4.9). He showed that for

odd n , designs X satisfying

XX = (n—l)Ih:+ E (0.6.1)

n,n
are A- , D- and E-optimal. An nth order square matrix
with elements +1 and -1 satisfying (0.6.1) was termed a

P matrix. Por the case n=2 (mod 4), Raghavarao (1959,1960)
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showed that designs X satisfying
XX = (n-1)I, (0.6.2)
are A- and E-optimal and that‘deSigns X satisfying
X'X = (n=2)I_+ 2E_ (0.6.3)

are D-optimal. An nth order square matrix with each dia- -
gdnal élément as zero and each non-diagonal element as +1

or -1, satisfying (0.6.2) was termed an. Sn matrix.
‘Danerjee (l975),uéed the notation Tn “for a square matrix

of order n satiéfying (0.6.3). Raghavarao (1959) proved
that a necessary condition for the existence of Pn is that
n = (62+l)/2 where d is an odd integer. Thus, there ar:
many values of n for which Pn is‘non-existent, i.e.,

for n=3, 7,9, 11, 15 etc.. Using the concept of the

Hilbert norm residue symbol and the Hasse-Minkowski invariant

details of which can be found in Hall (1967), Raghavarao
(1960) proved a necessary condition for the existenéé of S,
as (n-l,v—l)pk= 1 for all primes p , where (a, b)p is  °
the Hilbert norm\residue gymbol, Using this result it can be
shown that Sn matrices are non-existent for n = 22, 34, 58,
78, etc.. It can be easily proved that a necessary condition
for the existence of T is that n = {4 + »( 3f2-+ 4)* }/3' ’

where f is an integer. Thus, Tn exists only for a'few

values of n like n = 6, 66, etc..
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Denoting an nxn design X satisfying the conditions
giVeh by 60.4.9) as (n,s, A) where s denotes the number
of gseros in each column and A , the innér product of two
polumné, Bhaskar R&o (1966) proved the following results for
odd n |

i) for n=3 (mod 4) and n>3, (n,0,3) provides a

design that is A- and E-optimum,

ii) for n=>1% (n,0,3) is D-optimum and for n=<15,
(n,0,-1) is D-optimum and

iii) for n=1 (mod 4) and n>5, when P, does not exist,

(n,0,5) is A-, D- and B-optimum.

Murty and Das (1967) discussed the use of v-ary designs
in. v‘ treatments and v(v=l) blocks in constructing chemical
balance weighing designs. Rao and Das (1969).provided two
series éfvchemioal balance'weighiﬁg deéigns based 6n balanced
ternary dgeigns and compared their efficiencies with gome )
_existing designs. Saha and Dey (1973) also discussed the use
pf balénce¢ ternary depigne in theAconstruction of chemical

balance weighing designs.

Dey (1971) showed how optimum chemical balance weighing
designs could be comstructed by replacing O by -1 in the
incidence matrix of a BIBD. ‘ -

Gupta and Das (1977) showed how to combine two Pamily
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(A) BIB designs, i.e., BIB designs for which b = 4(r-A), to
get chemical balénce‘designs with whiéh the estimate of the
weight of each objéct cen be oﬁtained és 02 divided by the
nurber of times the object is weighed in the n weighing

operations.

Thé ugse of balanced bipartite weighing designs as
chemical balance designs has been discussed by me (Swamy,

1982).

0.7. Spring balance weighing designs

As pointed out in Section 0.2, the elements of & spring

" balance weighing design can assume only the values +1 or O.

¥ood (1946) gave'a method of construc%ing D-optimal
spring balancé designs when n = Pp= 3 (mod 45 from Hadamardl
matrices of order (n+l). The method is as follows: TLet
(n+1) be a Hadamard number. Withouf loss of generality,
let the elements of the first row and first golumn of Hn+1 ‘
.be each +1 . Subtract the first row of such a Hn+i' from

each of the other rows and let the reault be

E1,(n+1)

where, O stands for an nx1l matrix with each eiement

n,1l
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as 0. The elements of Kon will be 0 or =-2. By multi:‘-
: 14

rlying each row of Kn
’

L o -3 obtain a matrix L, 'séfis-k

fying the relation

H - (<2)" lnnl .

n+1l

Such an Ln , after it is ascertained that ILn

is positive.
(by permuting rows if necessary) provides a- D-optimai spring
balance design. These designs are also A-optimal with each

variance factor as"4n/(n+1)2 .

Mood (1946) also provided some D-optimal 'spring balance
designs for small values of n =p , by using a method given
by Williamson (1946). He also constructed ‘D-dptimal designs

for n=5, p=4 and n =6, p = 4.

For n>p , the method of getfing D-optimal designs
as given'by Mood (1946) is contained in the following results:

Let P, P be a matrix whose rows are all the arrangements of
1 4

r +1's and (p-r) O's, (Osr=sp). Prp can be denoted by
, ‘

‘P, itself p being always evident from the context. Let Q

' be a matrix made up of matrices P arranged in vertical

r

.order with Pr used n, times. Then, Q 1is a spring balancé

‘ P
design for weighing p objects in n = > nr(_f.) weighings.

r=0 . I
i

Hood proved that

i) if p = (2k-1), where, k is a positive integer and
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if n contains the tactor (ﬁ) , then, lQ'Ql will

be maximized when nk‘= n/(i) and all other n, =0,
ii) if p = 2k and if n contains the fuctor (p+i)

then, IQ'Q|» will be maximized When’ n = =

n/<p+1) and all other nf = 0.

?hese'designs, However, require far too muny weighing onera;'
tions. lBanerjee (1948) pointed out that spring balance designs
of equivalent efficiency but requiring a sﬁaller_number of
weighing operatioﬁs‘are provided By.BIBD. The incidence mat-
rix”of a BIBD with parameters v, b, r,s& and A can directly
be adopted as a spring balance weighing design}to.weigh

p = v objects in n =b weighings. The design lein.this
case will be such that X'X will,take the form (0.4.4) with
c=r and d = A . Thus, using (0.4.6) to0.(0.4.8),

variance factor for each object will be
{1‘+ (p-2) A }/(P-A) {r + (p-1) A }

and the covariance factor between every pair of estimated

 weights will be
—A/(r-?\){r+(p—1)h} .

The advantage in using the incidence mitrix of a BIBD as a

¥

weighing des 1gn is that the solutlonf of thc equations lead-

ing to the least-squares estimutes of the weights can be
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reduced to a routine procedure: The estimated weights are

-given'by (see’Banerjee, 1951)

n
A X Y5
1 i=1

where, 7, i =1, 2, «.., p. Bre the elements of the vector
X'y . The'Ln designs of Mood (1946) can be seen to be in-
cidence matrices of symmetrical BIBD with parameters v =b =

n§ r=R~&=(n+l)/2 and A = (n+l)/4.

If (n+1) and (n+5) are Hadamard numbers, ﬂn and
Ln+4 exist. These will provide suitable designs for weigh-

ing n objects in n weighings and (n+4) objects in
(n+4) weighings. The method of constructing an (n+m) X n
| design fqr m=1 2, 3, the problem of adding same or dif-
ferent rows of L, to L, and a comparative study of the
iariance factors for the different situations were dealt

with by Banerjee (1949b, 1950b). .

Banerjee (1952) studiéd the use of partially balanced
incomplete block designs as spring balance weighing designs.

The incidence matrix of a PBIBD may be singular even when
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bzv. Thus, all PBiBD caid not provids'non-stngular designs.

Banerjee (1952) pointed out'thqt a certain efficient spring

balanse design provided by Mood (1946) is nothing but a
PBIBD.

0.8. Repeated weighing designs

"wﬁen e symmetrical BIBD is used'as a spring.balance
weighing design to estimate the weights of n = p objects,
no degreés of freedom will be left for estimating the erfor
Ivariance. To ofercsme this difficulty, Banerjee (1948)
suggesfed that the design could be repeated. Ihus, ﬁ%s
‘repeated’ design sillsbe a 2pxXp matrix. ﬁyqpswhgn the
BIBD'used is not symmetrical, 'repeating'the design can be
resorted fo,\to get more degrees of freedom for estimating
the error variance. Dey (1969) pointed out that if the |
parameters of the symmetrical BIBD satisfy the condition
‘b >2r, then, combining the incidence matrices of the BIBD
'and_its complement would be better than repeating the BIBD.
' Kulshreshtha and Dey (1970) suggested yet another alter-
native fo the 'repeated' deésign for tﬁe‘case when the pre-i
cision of some of the estimates could be sacrificed to se-’,
cure more precision for the other estimates. Banerjeo (1974)
suggested one more alternative - that pf combining the cqn-

blementarleiBD_with itself - andvmadq'a comparative'studyﬁ}.
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of the four different designs.

For the chemical balance problem, Dey (1972) suggest-
ed four alternatives to the 'repeated' design and compared
'them with respect to two particular series of BIB designs.
SWamy (1981b) hasvsuggested yet another_alternative to those

provided by Dey (1972).

To obtain degrees of freedom for the error variance,

gﬁés and Giri (1979) suggested the use of truncated incomplete

BIB designs. Such designs are obtained by omitting from the

different dlocks of a BIB design a certain number, say q,

of treatments. The resulting design will be a balanced de-
sign (any two treatments will continue to appear togefher in

A blocks) for (v-q) treatments in b blocks of unequalvsizes,

each treatment being replicated r times.

0.9. Pactorial approach to the weighing problem

/

Kempthorﬁe {1948) discussed the factorial anproach'to
the weighing problem. The concept can be illustrated with
- the help of the following examplé: Consider a 23 factorial
experiment with the eight treatment.combinations'as (1), a,
b, ab, ¢, ac, be, abc. (A clear account of factorial def
signs may be obtained@ from Kempthorne (1952))._ A half re-
. plicate of fhe ,23 experiment wiil cdnsisf of oh;y fou:
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treatment-combinations. If we decide to include vhose treat-
ment‘cbmbinatioﬁs which havevan even.number'of letters in
common with 'ABC, theﬁ, the treatment eombinatibns to be
‘included are -{1), ab, ac, bc. Interpreting'the preeence of
- a leiter \a,‘b or .c as including‘the eorreepdnding object |
ey.the ieft pan End; the absence of a letter as not.weighing
the corresponding object, we have (1) representing the weigh-
;ng operatioh on an empty pan, ab repreeehting the weighing
‘operation in which the first two objects are weighed etc..
The estimated weight of each'oojeEt will be half of the
difference beteben the readings of those weighings contain-
ing that object and-those, not containing it. The variance.
of the estimated'weight of each object will be 4 0% = 023
,where;’ 02 is the variance of each weiéhing. If the absence
of a letter is interpreted as putting the correspondlng ob-
ject on the right pan, thehn, the precision can be increased.
- Here, the eetimated welght of each object w1ll be one fOurth.
of the difference between the readinga of those weighlngs
eéntaining that object and those not containing it. The

variance of each estimated weight will now be g%,

' Kcmpthorne (1948) pointed out that although the spriﬂg

‘balance aBSisné L of Mood (1946) furnlahed eomewhat
smaller varianeg for the eetimatod woighte, they had. the
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disadvantage thdt‘thé estimates were eorrelated,'ﬁhereaa, the
estimates furnished by thefract}onalzwplicatee were ortho-
'gonal.' Hoiever, Bgnérjee (1949a) bbsérvad that the designs
hn of Mood are virtually the same as the des}gps furnished
 by fractional replicates. The latter deeignsﬁf;ke account

of the bias and if the weighing opération corrésponding to
the determination_of bias is omitted (in case the balance is
frée_from bias), the resulting design will be the same as

L, . If the design L is adjusted to suit estimation of
biae in a biased,sﬁring balance, the estimates of the weighté
will turn.out to be orthogon;i. Thus, in the example based

on half-replicate of a 23 design, the design matrix is

seen to be

~ [o o o]}
11 0|

1 0 1
0 1 1|

1If (0 0 O0) is omitted, this becomes Ly
. o
Kempthorne (1948) suggested the possibility of using
& three-fourth replicate as .a wéighing design. PFollowing
this suggestion, Banerjee (1949a, 1949b) discussed the use
of fractional replicates of the 'fom‘ (2B -1,)/29_' (1=p sn)

and determined the variance factors on using such a
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fractional replicate.

0.10. -Singular weighing deéigns

Due to a variety of reasons (see Raghavarao (1964)),‘an

, h){p design matrix X chosen for a certain weighing problem
* might turn out to be of rank less than p , thus yielding a
singular weighing désign. When a well known.block design is
used as a weighing @ésign, the-parameters of the chosen design
may be such that the resulting weighing design is singular
(seg Banerjee (1966a), Dey (1971) and Swamy (1982)).

ﬁhen the design matrix X in the model (0.2.1) is not
df.full rank, the normal equations X'X B =Xx'y for esti-
mating the weights [ by the least-squares method will not
‘admit of a unique solution. Thé normal equations‘have many

solutions and to get any one of them, a generalized inverse

G of X'i can be found and the corresponding solution taken
as

39 = ¢6X'y . » (0.10.1)

A generalized inverse (g-inverse) of a matrix A is defined

as any matrix G that eatisfies the equation - AGA = A. As
many generalized inverses of X'X. exist, the solution
(0.10.1) is not unique. B° should not be taken as an esti-

mate of B . It is just a solution of the normal equstions.
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A (1inear) function of the weights ‘Bl’ Bor ooy ép is
defined as estimable if it is idehtiéally equal to some
linear function of the expected value of the yector of
» observétions Y « Many necessary and sufficient conditions
‘for the estimability of the linear function ¢'B where, ¢!
is a 1Xp vector, exist, one of them being that there

exists an nx1l vector ¢ such that

c! . = £..x . (0110c2)

‘Por obtaining the_belst linear unbiased estimate (b.l.u.e)

and ité variancé, for an estimable function, one makes use
of Gauss-Markoff theorem which states that if E'g is an

o

estimable function, its b.l.u.e. is c'f~ with variance

g" 69_62 where, QOI is any solution to the normal ®equations
using any generalized inverse G of X'X. Both the estimate

and its variance will be invariant to the choice of (¢ and QO.

Wheﬁ a8 singular nxp weighing design X is of rank
.r (r<p) , by assuming without loss of generality that the
'first r columns of X are independent, Raghax}arao (1964)
obtained the necescary and sufficient condition for the weight
of the ith object i=1,2, ..., D, to be estimable as
[ i = o(p-r),l , where, éi is the ith column vector
of order (p-r) of H' with H defined as (x‘r'xr)"lxr'x(p_r),,

Xr-and x(p_!-.) staending for‘ the nxr and nXx(np=-r)



37
matrices given by X = [Xr x(p_r)] « From this it follows
immediately that the weight of ‘the (r+i)th object, i =1,

2, eesy (P-r), is not estimable.

When an nXp weighing design X is singular, of rank
r (say), X must be augmented by at least (p-r) additional
iows to get a resulting design_that will be of full rank. The
méthod of adding @ row that will result in an optimum deéign
(D-optimum) was discussed by Raghavarao (1964) for the case
r = (p-1). Bangrjee (1966a) cbnsidered the problem when the
deficiency in the rank is more than‘one. Hazra and Banerjee
(1973) dealt with the same problem by making use of the unijue
Moore-Penrose g-inverse. Litefature on g-inverses is avaii-

able in Rao and Mitra (1971) and Searle (1971).

COMparigon of'twb éingular weighing designs will be
meaningful only with resb.act.to a function c¢'f} that is
estimable with both the designs. The design that provides
'a smaller vafianca for the estimate of c¢'[} will naturally

- be considered superior.

0.11. FEstimation of total weight

Banerjee (1966a) observed that a design that is optimum
with respect to the eatimation of the 1ndi§idual weights need
not be so yifh respect to the estimation of the total weight,
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.

To substantiate this observation he made use of the singular

LY

weighing design

(101 1]
1 1 1
1-1 0
|1-1 0 .

With this design the total weight is estimable‘(refer Section
0.10) and‘the variance of the total weight is (J%/2, whereas,
~if three columns 6f'a Hadémard métrix H4 are used, the
variance of the estimated total weight works out to 30%A4
(variance of each estimated weight is (T%% and the estimatés':
are uncorrelated). To compare two weighing designs with res-
pect to the estimation of the total weight one has to deter-
mine the sum of ali the elements of a g-inverse of X'X for
each of the designs and fhe design for which this sum is
smaller 1sbsuperior (see Criterion 0.3.5 and the last para-

' gréph of Section 0.10).

Sinha (1972) discussed at 1ength the problem of obtalnlng
spring balance weighing designs for estimating efficiently
the total weight of a given set of objects, retaining the
simultaneous estimability of all the individual weights, under
the‘restriction that at most k..objects can be weighed at a

time. Dey ahd Gupta (1977) disdﬁssed.the problem of estima-
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tion of the total weight, under the same restriction, for
singular spring balance weighing designs. The problem has
been considered in a more general sense by Swamy (1980).

A similar problem under a different restriction for chemical

-balance designs has been studied by Swamy (1981a).

n

0.12. The case when E(ee') is different from 021

When E(ee') =V, where, V is an nxn non-singular

-matrix of known_eiements, not necesearily the same as 0'2 In'

the generalized least-squares estimate of (3 is obtained as

f=@vinlevly o (0a20)

with

cov(B) = (xrvix)t (0.12.2)

1f E(e gf) = diag (012 ’ 02 JEREY Grf) where diag (012 ’ ,0'22
ceey Of ) stands for a diagonal matrix with diagonal ele-

~

.ments aﬁ 0’2, 0’22, '~”’ O’f fespectively, and 012 ’ 022 ’ ....,
, 0'5,, are unknown, estimates of these can be obtained using

variance components techniques and these estimates may be used
to find the generalized leaat-equarée estimate of B. Excel~ -
lent literature on variance components e'stirnati.orl.~ Minque o
fheory and allied topics is available in Graybill (1961),
Rao {(1970) and Searle (1971). The olamantn'ot the error

“~

vecior e could be assumed to be éompi'i-ing of two components
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(to suit = apecial situation) gnd the error variancea eould

be estimated following the variance components technique.

‘Banerjeé (1965) studied the weighing problem under the
. agsumption that the errors are au’_cocorrelate'd, i.e., t‘aking

B (ee') = O'2V , where,

1 p p2 .o, ool
p 1 o ... o072
V =
pn-l pn—z pn-3' .. 1
L_ -

Raghavarao, Sodhi and Singh (1968) made use of the
assumption that the variance of the errors will Be_propor—
tional to the total weight on the balance, i.e., E (8e') =

. p .
] Qiag (zl, Zoy eeey zn), where, zi-," injaj , and o is.

-4

the constant of proportionality.

0.13, PFractional weighing designs

Considér a Hadamard matrix Hp. This would be the
best chemi'cal balance design to estimate the weights of p
objects in p weighings. ~But,h due to somé reason like l.a"ck
of resourc‘es, timg etc., one mai.hav‘e ‘just ‘ pl (<p) _wo_igh— v
ing operations corresponding to Py r‘qws,. of Hy - This

Pyxp design is a fraction of H

P and is a fractional
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weighing design. With such a design which is singular,'one

can not obtain unique and unbiased estimates of all the in-
dividqal’weights. But, fractional weighing designs under

. randomized procedures developed by Zacks (1966) provide un— |

‘biased estimates for any linear function 9_'@ and obviously,
therefore, for any weight By» 1=1,2, ..., p. Some re-
sults analogous to those obtained by Zacks (1966) for random-
ized fracfional weighing designs were obtained by Banerjee
(1966) fdr the non-randomized fractional weighing designse..

0.14. Biased estimation in weighing designs

Sihota and Banerjee (1974) applied the biased estimation
procedures provided by Hoerl and Kennard (1970) for the

multiple regre351on model, to the weighing problem. '

0.15. Recent work on weighing designs

‘; Cheng (1980) has developed a theory of oﬁtimum designp'

: which embraces the‘rQSults of Raghavarao (1959, 1960) and
Bhaskar Rao (1966) as immediate consequences and can be used _
to prove the oﬁtimality of some. weighing designs over all
possible designs with respect to a very general class of

oriteria. He has shown with the'help of a counter-oxanplo -

- that there is no gaarantee that the bolt deaign in ﬁ .p
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is really optimal over & , where, & is the set
n,p n,p
of all possible nXp weighing designs X and ﬁnsp is
}
the set of all nxp weighing designs X for which X'X

is of the form (0;4.4).

Galil and Kiefer (1980) have proved some new results.
oh optizﬂality 6f weighing designs. They pfoved a result
characterizing optimum designs when n z(2p-5) (for n=p).
" With the solutioné provided by them for certain hitherto
unsolved cases, the list of D-optimum designs for all .

Pp=<12 (for all n=zp) is now complete.





