
CHAPTER 0 

I N T R 0 D U C T I 0 N 

0.1. The concept of weighing designs and the origin of the 

weighing _problem 

The concept of weighing designs can be made very clear 

with the help of the following example: Let there be two 

objects with weights p1 and ~2 , respectively, which are 

to be estimated· with the help of a chemical balance that is 

free from any ·oias. Let the variance of an individual weigh

ing be ~ 2 • If the two objects are weighed together on one 

pan of the balance, and then, on opposite pans,. the 'equations 

for estimating the unknown weights p1 an1 p2 will be 

pl + [32 = yl 

~1 - ~2 = y 2 , 

where, y1 and 1 2 are the corresponding readings from the 

scale. Thus, the estimates of the weights are (y1+y2 )/2 

·and (y1-y2)/2. The variances of these estimates will each 

be ~ 2/2 which is half the value of the variance when the 

two objects are weighed individually. The mean of the esti

mates of each weight,·found from n pairs of weighings of 

sums a'nd di:t;ferences will have variance tJ 2 /2n , whereas, 

the number of pairs of weighings of the objects :;_ndividually 
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will have to be 2n to give the same precision to the aver

age estimated weight. 

Thus, it is clear that, when measurements have to be 

made on several quantities, greater precision in estimating 

~he measurements is possible when the measurements are made 

on sets of objects rather than on individuals. 

The problem of weighing a number of objects may be re

garded as the problem of the estimation of the effects of 

a number of factors which do not interact. 

The •weighing problem•, i.e., the problem of determin

ing the weights of several objects by weighing them in suit

able combinations, to~k ita origin in the,following casual 

illustration furnished by. Yates ( 1935)' A chemist has seve.n 

light objects to weigh, and the scale also requires a zero 

correction.' The obvious technique is to weigh each of tl,le 

seven objects separately and to make an eighth weighing ·with 

no object on the scale so that the zero correction can be 

determined. Thus• ~he weight .of each object will be deter

mined as the di·f·ference between the readings of the scale 

when carrying that object and, when empty. If the standard 
l i 

err.or of each weighing is den..>te~ by· C1 (assuming that 

ayatematic e~rors are non-exi'll~ont and that'the errors are 
. \ I . . 

random), then, the v~riance ot each estimat'd weight will 
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work out to 2cr 2• 

Yates (1935) suggested an improvement over this custom

ary technique. This improved technique conoists of weighing 

all the seven objects together and also weighing them in 

groups of three so chosen that each object is weighed four 

ti~es altogether, twice with any. other obj~ct and twice with

out it. Denoting the unknown weights of the objects as p1 , 

p2 , ••• , ~7 , an~ the readings from the scale as y1 , y2 , 

•.. , Ya , the equations for determining the unknown weights 

according to the scheme proposed by Yates are as follows: 

p1 + J32 + p3 + ~4 + p5 + J36 + p7 = yl 

J31 + (32 + (33 = y2 

. ~1 + p4 + p5 = y3 

~1 + P6 + 137 = y4 

P2 + 134 + P6 = y5 

J32 + J35 + 137 = y6 

J33 + 134 + ~7 = y7 

p3 + p5 + P6 = Ya (0.1.1) 

The weight 131' is determined as 

p1 
y1 + y2 + y3 + y4 - y5 - 16 - Y7 - Ya 

= 
4 

(0.1.2) 

Similar ex-pressions can be obtained for the other weights. 
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As the ,,.ariance of a sum of independent obser\ a tiona is the 
• 

sum of the vu.riances, the variance of the estimated weight 

J31 i·s, from ( 0 .1.2), 3<T 2/16 = cr 2 /2 , w!'lich is only one 

fourth that obtained by the direct w~thod. Thus, the im-

proved technique has halved the standard error of each esti-

mated weight. To gdt th~ standard error of each estimated 

weight as cr/~ by tpe direct method, one has to repeat the 
I 

eight wei~hings, i.e., one for each object and one with no 

· object, four tiJlleS and take the average of tLe forr esti-

mates thus obtained. Thus, if a certain degree of accuracy 

is required, calling for repetition of the weighings by the 

direct method a certain number of times, only one fourth as 

many weighings will be needed by Ya tee' J<lethod to procure 

th' same accuracy in the average. 

A further improvement in the weighing technique for the 

above problem was suggested by Hotelling (1944) who modified 

Yates' procedure to include on the other pan of the balance 

tho~e objects that are not weighed. Calling the readings 

f th 1 • ' ' th t' rom e scu e now as y1 , y2 , ••• , y8 , e equa 10ne 

Rimilar to (0.1.1) becom3 
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~ + P2 + p3 + p4 + P5 + (36 + P7 = Y1' 

J31 + P2 + P 3 - P4 ~ P~ - P6 .- P7 
pl - p2 ~ p 3 + p4 + J35 - p6 - p7 

Pr - P2 - P3 - P4 - J3~ + J36 + P7 
• J31,~: J32 - J33 + p4 - J35 + J36 ~ P7 • Y5' 

~ . . 

~ ~1 .+ P2 • J33 - J34 + J35 - p6 + P7 • Y6' 

-.~1- P2 ·.~3 + P4- P5- P6 + J3a • Y7' 

- P1 ·· ~2 + P3 - 134· + P.5 + P6 - P7· • rs" (0.1.3) 

·.In this. oaae, ·acme. o~ the · ;yi' may be n~gati~e. In Yates• 

method~ the obje.ota are alway-., put on one pan and the weights 

(known) are addJid to the other pan to b.alance the two pane • . . 
The weight added to the .9ther pan in the i th weighing 

o~eration is 7i • In Hotelling'a method, when oer~ain ob

je()ta artt put on one pan, and· all the others,. on the1 other . 
• ' ' , .. ' II 

pan,. the weight added to either .Pan to maintain balance is 

recorded poaitiv·e only when it ia added to the tother!. pan • 
. . 

Otherwise, it ia·reoorded aa negative •. Thus. 1;he Yf' .may 

be poiai tive or negativ:e. Prom. (0 ~1. 3). the estimate ·of 131 . 

ia·obtaine~ aa 

I _,/ I 

with·aimilar\•xpreltsiona for the·otb.er unknowns. The. var,ianoe· 

· of eao~· eatt~ated weight by this aeth~d· is .C1 2/8 • ~ua, the. 
. . I . . 
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stundfird error of the estimute is ~!lf that obtuined by Yates' 

method. Here, the number of repetitions required to procure 

a particular standard error in the mean is one sixteenth that 

required by the direct method. 

Such improvements in the technique of measurements can 

also be apnlied to other types of measurements as of distances, 

l€nc;ths,'vol tages and resistunces, concentr:.'l. tions of chemicals 

in solutions, in fact, any me<.:surement in which the measure 

of a combinu.tion l.s. a known linear function of the separate 

measures with nurnerically e11ual coefficients. However, for 

the sake of simplicity, the prohlem will be discussed in the 

language of weighing operations. Further, it is quite reason

able to asswne ~hut the recorded results of weighing opera

tions will be independent of each other and that they will 

have the same standard error. 

In the above example, cr was assumed to be known, 

whereas, in actual practice, the value of rr may be unknown 

and it may be necessary to find an estimate of ~ from the 

recorded results. Getting the estimate of a from the re

sults of the experiment may be more satisfactory since the 

value of cr will then refer to the actual experiment rather 

than to some previous experj.ments which might not have been 

made utt.de.r exactly the same conditions. But, in order to 
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huve such an estimate of a , it is necessary that the number 
# ' ~ 

of obse~tions exceeds the number of u~nowns and desirable 

that the excess shall be large,enoug~ to ensure a sta~le 

·estimate of ~ • 

. 0.2. ·The Ptatistical· model tor the weighing problem 

The results of n weighing operation~ to determine the 

individual weight~ of p ob~ects on a ~hemical balance.w1th 

zero bias fit into the linear aodel 

!. • X(! + ! ( 0.2 .i) 

where,. X • ((xi~)) i • 1, 2, ••• , n, j • 1, 2, ••• , p, is 

an· n )( p. matrix of elements xij • +1, -1 or 0 according as 

in· the ith weighing operation the jth object is placed, res

,_otive~y, on the left pan, right pan.or none; z is the 

n ~ l observed veotor of· the recorded, results of the weigh~ 

ingSJ (! is a PXl vector representing the Ullkncwn weights 
-of the p objects; !. ie an n )I( l · unobserved random vector. 

·' 
I 

nch that B(e) •2. and B(ee•) • a 2I where E stands for - _ _, n 
Bxnectatiori, e• is the transpose of' !. and In is the -
n "x n identity matrix. In order to aatimate the Ul1~nown 

weights from the reau~te of the · n weighing operations it 
I 

is necessary that n ar p when the balance i.e free ,froa bias. 
'. / 

If .the balance has bias, then, to estimate the.biae and the 
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unknown weights, ·it 'is neceasary that n ~dP+l). The bias 

can always be regarded as 7et another unknown weight to be 

esti~ated. Taking the bias to be the first object, the 

elements will each be unity for i = 1, ?. , ••• , n, 

i.e .• , the matrix X will have its first column as a column 

of unities when the balance has a bias that is to be nsti

mated. X represents the design ~atrix and is called the 

weighing design. The rows of X represent the weighing 

operations and the columus rep ... ~esent the objects whose weights 

are to be determined. In a spring balance problem, the ele-

menta 
, 

can assume only the values +1 or 0. Consistent 

with the signs that the el~ments xij can take, the record 

of the ith weighing is taken as positive or negative accord

il~ as the balancing weight is placed on tht! right pan or the 

left. A spring balance design can always be regarded as a 

c~emical balance design with no object placed on the right . 

. Pan in al"y of the weighing operations. The spring and chemi

cal palan~e weighing designs are also called one-pan and 

two-pan weighing designs, respectively. A chemical balance 

weighing design is called a strictly chemical balance w~igh

ing design if in aach weighing operation n~ither pan is empty. 

In Qther words, fo.r such designs. X , there wtll be at least 

one +~ and at least one -1 in each of the n rows. 
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. As (0.2.1) represents a linea~ model, all the results 

pertaininb to the g0neral linea~ model will hold goo~ for 

( 0. 2 .l). A detailed. account of linea.l· models can be obtained 

from Graybill (1961), Rao (1973) ar.d ~aarle (1971). Sorn"l of 

the ~'esul tc; that are consequer Jes of the Gauss-Markoff model 

are stated below: When thP design mutri:x. X .ts of full rank, 

i.e., of ·ran,_ p • Y 'X will be non-singul~r and the leas·t

sqt.ares estimates of. the weigh'ts ~ are given by 

(0.2.2) 

where, (X'X)-l ~tands for the inverse of the matr~x (X'X). 

The variance-cov:(riance matrix of 0 is given by 

(0.2.3) 

(X'X)-l .is denoted by C = (( cij)) i = 1, 2, ••• , p, 

j : 1, 2, ••• , p. The variance of t;he estirna~ed weight of 

the ith ·object is given by cii which is the itb 

diagonal element of C is known as the variancn factor for 

the ith ohj'3ct. If <1 2 is unknown, the unbiased estimate. 

of ·cr 2 based on the least-squares estimate of ~ is given by 

A 2 A t A. 

. C1 • (y-X~) (y-X(3)/(n-p} (0.2.4) - . 
'1'~ derive the estimates of ~ and 0' 2 as in (0.~.2) and 

(0.2 . .,4), no assumption need be made about the forn of the 
I 

distribution of thA er.cor vecto:c !.· But, some such a·ssump-
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tion will be necessary if one wants to use max~mum likelihood 

estimation~ Usually the distribution oi e is taken to be 

normal. 

soon,after the introduction of:the weighing problem by 

Yates (1935) and Hotelling (1944), a series of articles on 

this subject appeared, some of the early ones being those by 

Kishen (1945), Rao (1945), Mood (1946) and Placket and Burman 

(1946) • A lot of·p~oneering work on the weighing problem 

has been done by Banerjee (1948, 1949a, 1949b, 1949c, 1949d, 

1950a, 1950b, 1950c, 1951, 1952). 

0.3. Optimum designs and efficiency crit~ria 

In·weighing designs; one tries to looa-pe if possible, a 

design matrix X with which each cii is minimum. When 

this is not possibl•, one has to construct X to suit alt~r

native optimalit7 orit,ria. 

Hotelling (194~) ~!ld subsequently Mori~ti (1954) 
! 

proved that the minlmwa possible value for each variance 

factor cii is 1/n and thus, the minimum variance for each 
' 2 2 estimated weight 1~1 a /n. ~a /n is referred to as the 

'minimum minimorwa' 1 of the var.iance of each estimated 
I . . 

weight. 
i \ 

The variance·or, eao~ estimated' weight 

minimorum if and oM 1 • if x•x = ni • ~ . p 

will attain the minimum 

A d~sign X tor wbioh 
l 
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X'X = niP will, therefore, be the ~ or optimum design. 

But, such a design does not exist for all values of n and 

p. Thus, it becomes necessary to choose an optimum weighing 

design for a given situation. Listed below are some effi

ciency criteria which will be useful in comparing different 

weighing designs. 

Criterion 0. 3 .1. ·Of two n x p weighing designs x1 and 

x2 , x1 is superior to x2 if the variance of each estima

.. ted weight is SJDalHtr in the case of design . x1· than in the 

case of design x2 ~, i-e., if each diagonal elem'ent of 

· (x1 •x1 )-l is smaller than the corresponding diagonal ale-

,. ment of (X2 •x2)-l • ' Iri some ·oases;' it might so happen that 

the variances of some of the estimates· are sma·ller when x1 • 
is. used~ whereas, the variances of t4e other estimates are· 

emaller when x2 isused. Thus, out of two designs x1 
and x2 , one may give more efficient estimates of some of. 

the weights while the other gives more efficient estimates 

of the other weights. 

Criterion 0.3.2. x1 is superior to x2 if the average. of 

the variances _of the estimated weights is smaller in the cas~ 

ot x1 than in the case of x2 ·• This is knQw~, as the A~_ep.ti-

. mali ty ori teri on (see Kiefer; 19 59) • A-op_timali ty. i·ll :.a so , 
known as trace-optimality since ~he criterion reduces to' 
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X1 be~ng superior to x2 if tr(x1 •x1 )-l is less than 

tr(x2 •x2 )-l , tr(X) standing for the trace of the matrix 

x. The efficiency of a given nxp design X according 

the A-optimality criterion is given by Kishen (1945) as 

to 

cr2;n = 
p 

(0.3.1) p p 
a2 I: c .. /p ri I: c.i i=l l.l. . 1 l. l.= 

Criterion 0.).3. ~l is superior to x2 if tx1 •x11 is 

greater than lx2 •x21 .where, lxl stands for the determinant 

of X • This criterion is known as the D-optimality crite

rion (see Mood, 1946 and Kiefer, 1959). Note that maximizing 

'X 'X l amounts to mi~imizing I<X 'X )" .. 1 , . • This criterion is 

based on minimizing the gener~lized variance of the estimated 

wei'ghts. According to this criterion, the efficiency of a 

given n ~ p design X is 

max lx•xt 
(0.3~2) 

Criterion 0.3.4 •. X1 is superior to x2 if the maximum· 

c.haracteristic root of (X 'X )-l is smaller than the maxi-
1 1 

mum characteristic root of (x2•x2)-l Equivalently, X1 · 

is ~uperior to x2 if the minimum characteristic root of 

(x1 •x1 ) is larger tlian the minimum characte-ristic root of 

(x2 •x2 ) •. This criterion .is known as tha E-optimality ori-
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terion ·(see Ehrenfeld, 1955 and Kiefer, 1959). This is 

based -on the fact that if ~' Q. • is a ·linear function of the 

true weights subject to the condition that £'£ = 1 , then, 

. the maximum value of 'the variance of ~·~ for all choices 

of c satisfying .£'.£ = 1 , is cr 2 "" where Y'max ' 
(X'X)-l. is the maximum characteristic root of 

A 

Here, E 
refers to the least-squares estimate of p _obtained with' 

the design matrix X • The efficiency of an n x p design 

X based on this criterion is 1 

(0.3.3) 

where, a is the minimum characteristic root of (X'X). min 

Criterio~ 0.3.~. xl is superior to x2 if the ·m.un of all 

the elements of )-1 (Xl'Xl . is less than the sum of all the 

elements of (X2'X2)-l. This criterion is based on the esti-

mation of the total weight of the p objects. The variance 

of the estimated total weight of the p objects obtained 

with an nxp design X is 

cr 2( sum of all the elements of (x•x)-1 ) {0.3.4) 

In certain situations, other definitions of best designs 

may be preferred. Thus, problems may aria~ in which one 

might prefer. 
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i) to minimize the vurianoe factors subject to the res-

triction that they be equal, 

ii) to minimize some function of the variance factors or 

iii) to ~inimize only a certain subset of the diagonal 

elements of (X'X)-l on a minor of the matrix (X'X)-l 
' 

~s might be the case when one wants only rougR esti-
" 

matea of the weights of some objects, but more accu

rate estimates of the others. 

Gupta and Dae (1977) have, for instance, introduced the follow-

ing definition of an optimum design t "Of the class of all 

n )( p weighing designs, design X is said to be optimum if 

the weight of t~e ith object is estimated with variance ~~ni' 

i = l, 2, ••• , p., where ni · represents the number of times 

the i th object is included ill the n weighing operations"· 

It is .obvious that the efficiency of two weighing designs 

to measure the weights of p objects can be compared only 

when they both have the same number of weighing operations •. 

Nprmally, one· exp~cts the efficiency of a design to improve 
,. 

when the number of weighing operations increases. 
l 

Banerjee (1972) observed that, in the. case of chemical 

balance weighin~ di$:Jeigns,. D- and E- optimality criteria 

are equivalent and that in the case of spring balance weigh-
' . 

ing designs·, D-optimali ty implies E-optimali ty. 
) 

.• 
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0.4. Some results on matrix th~£!l 

~he following well known results on matrix algebra 

which are used in various Chapters of this Thesis are stated 

without proof : 

Let Ai be a square matrix of order n. with each of its 
1 

diagonal elements as ri .and eacp of it, off-diagonal el~ments 

as A. , i = 1, 2, ... , m• let pij be a matrix of dimen-1 ' 
sion nix nj with each of its elements as ,\ i j ' i I j, 

i,j = 1, 2, ...... ; ')m . and let ·Fji - F' • Let - i. . J 

·Al . 1.1'12 1.1' 1 ~ ... P'lm 

,21 A2 P'23 1"2m 

I Al, 2, m!l • • .. . .. ... ' = 

• • • • • • ..... • • 

'ml ll'm2 P'm3 ... Am 

m 
which is a determinant of order N = E ni • Then, the value 

i-=1 

ot the above determinant is given by 

!ll m I A1, 2, • • ·, m } • n Pi n ni J (0.4.1) 
i=l 1=1 

where, Pi • .(ri 
(ni -1) 

• r 1 + A1(n1-l), R. 
• pi/ni ' - ,\1) ' pi 1 

1 = 1, 2, • ~ •, m ; ,\i;i • Aji and 
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Rl A.l2 A.l3 • • • A.lm 

A.21 R2 A.23 ••• A. 
2m 

J • • . . • • . . . •• 

•• • • • • . . . • • 

A. · ml Am2 A m3 ••• 1\n 

The above determinant, which ia of order m . , may aga1n admit 
-' 

of a similar reducti.on. If the we.ighing design X is such 

that X'X a A1 , 2 , •. pm, there will be m eete of variance 

factors and, in each set,· the variance factors will be equal. 

!l'he ni variance factors in the , . ith. set will be equal to 

(ni -1) J i/(ri- Ai) niJ (0.4.2) 

wliere, 

Rl Al2 Al3 . . . . . . . . Alm 

A.21 R2 ,\23 ...... •·. A ·2m 

. . •• •• . . . . . . . . • • 

Ji = ... . . . . . . . . . . . . • • 

Ail A.i2 A.i3 • • .Ri' •• Aim 

• • . . • • . ....... . . 
A. 
· ml 

A 
m2 

A 
m3 •••••••• R.m 

with R' ·i = { ri + Ai (ni -2)} /(ni -1) 
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Let A be a partitioned symmetric matrix 
' 

such .that A and F1 are non-singular. Then, 

= 
{0.4.3). 

where, = 
• -1 

F3 - F2 F1 F2 • 

The following results can be obtained as simple cases 

of the above results. 

If A is a matrix of the form 

(0.4.4) 

where, c and d are scalars and Ep,p is a p )( p matrix 

with each element as unity, then, 

and 

where, 

and 

I A I = (c-d)(p-1 ) {c+(p-1)d} 

-1 
A = (f-g)Ip + g Ep,p 

f = { C+( p-2 )d} /( c-d) { C+( p-l)d} 

g = -d/(c-d) {c+(p-l)oJ. 

{0.4.5) 

(0.4.6) 

(0.4.7) 

(0.4.8) 

Remark If an n X p weighing design X i t3 such that X 'X 

is of the form (0.4.4), then, obviously, X will contain 

c ~ 1's in each of its columns, i.e., each object is weighed 



(on the left or right pan) 

of any two columns of X 

ensure that 
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c times; and the inner product 

will~be d • Such a desigr:t X will 

i) the variances of the es+.imated weights are equal 

and ii} the estimated weights are equally correlated. (0.4.9) 

In fact, the variance factors will each be f given by 

( 0.4. 7) and the covariance between any two .estimated weip;htf!J 

will be g given by (0.4.8). · If the estimates of the weights 

determined with art .n x p desi~n m£trix X should satisfy 

(0.4.9), then, X must be of the form (0.4.4). Thus, X'X 

being of the f<>rm ( 0.4 .4) is a necessar~r and sufficient con

dition for the estimates of the weights obta~ned with the 

n)( p design X to satisfy (0.4.9). 

0.5. Some.well known block designs that can be u&ed to 

construct weighing designs 

i) BIB dusigns 

A balanced incomplete block desig~ (BIBD) is an arrange~ 

ment of v elements (+,reatments) in b blocks each of si~e 

,! ( < v) such that 

l) every element occurs at most once in a block, 

2} every element occurs exactly in r blocks and 

"3') every pair of elements occurs together in exactly 
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A blocks. 

v, b, r,,A, A a:r-e called the parameters of the BIB ~eeign 

and they satisfy the following relatione: 

vr = 

A (v-1) = r(.!-1) 

b~v 

(0.5;.1) 

(0.5.2) 

(0.5.3) 

If v = b , then, obviously, r =A· and in this case the BIBD 

is called a symmetrical BIBD. 

Given a BIBD with parameters v, b, r,.! , A , its 

complementary BIBD is obtained by including in each of the 

b blocks those (v-ol) treatments that are not present in 

the corresponding block of the original BIBD. The comple

mentary RIBD will have parameters v' = v, b' = b·, r' = b-r, 

,A' = v~, and t .. b-2r+ A • 

ii) PBIB designs 

Given v elements 1, 2, ••• , v, a relation satisfy~ 

ing the following conditions is said to be an association 

achema with .m classes: 

1) any two elements are either lst, 2nd •••• or mth 

associates, the relation of association bein& 

aymmetrical 

2) each eleme~t has n1. ith ••sociates, the number pt 

beiBg independent of the ~lement chosen 
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. 
3) If any two elements ure ith associates, then, the 

number of elements tha~ are jth associates of one 

and kth associates of the other, is i 
pjk and is 

independent of the pair of the ith associates 

chosen. v , ni , i = 1 , 2 , • • . , m , and 

i, j, k = 1, 2, ••• , m, are called the parameters 

of the association scheme. 

Given an association scheme for v elements, a partialll 

Jalanced incomplete block design (PBIBD) is defined as follows; 

If there is an association scheme with m classes with given 

parameters, a PBIBD with m associate classes is an arrange

ment qf the v elements into b blocks of size Jl (<v) such 

that 

1) .every element occurs at r • .10st once in a block, 

2) every element occurs in exactly r blocks and 

3) if two elements are ith ~ssociates, then, they 

occur together in A i blocks, the number A i. 

being independent of the pair of ith associates 

chosen. 

v, b, r, .( ,and Ai, i = 1, 2, •••; m, are called the para

meters of the PBIB design. · These parameters satisfy the 

following relatiouss 
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i) vr = b.l, 

m 
i i.) I: ni = v - 1 , 

i=l 

m 
iii) I: n1 Ai = r{ .t -1) , 

i=l 

iv) · 
m i 

&ij where l:P 'k = nj -. , 
. J 

k=l 

v) i j 
ni Pjk = :nj pik • 

s1 j = 1 if 1. j . 

= 0 otherwise, 

( 0. 5.4) .. 

In a PBIBD, b and v need not satisfy (0.5.3). 

A detailed account of BIBD and PBIBD can be obtained 

f'rom Raghavarao (1971). 

iii) BBW designs 

A balanced bipartite weighing design with parameters 

v, k1 , k2, A1 , denoted by BBWD (v,k1 ,k2 , A1 ) is an arrange- .. 

ment of v elements into b blocks Bi = { Bi 1 ; B1 
2 } each 

with A- :a (k1+k2) distinct elements, the number of elements 

in B1 j being kj ., j = 1, 2 J i .. 1, 2, ••• , b, such that 

each element occurs in r blocks, each pair of distinct ele

ments is linked in exactly A1 blocks and n-linked in exactly 

A 2 blocks (see Huang, 1976). If B is a blook with subseta 

B1 and B2 such that B • { B1 ; B2 } 1 where B1 • { ~ 1 , 
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two 

elements in B are said to be linked or n-linked in B , if 
~ 

and only if they belong to different subsets or the same sub-
• 

set of B , respectively. The parameters of a BBWD satisfy 

the following relations : 

i) b = A. 1v(v-l)/(?k1k2) , 

ii) A- 2 = A- 1 {k1 (k1-l)+k~(k2-l)};c2k1k2 )and 
iii) r = A1A (v-l)/(2k1k 2 ) (0.5.5) 

where, r represents the number of blocks in which each ele-

ment occurs. 

iv) Balanced n-ary designs 

A balanced n~ary block design is an arrangement of v 

treatments (elements) in b blocks of size Jt such that 

eyery treatment (element) is replicated 

b 

r times and 
' 

• 
E. ni j nim is a constant, where, is the number of times 

i=l 

the jth treatment occurs in the ith block, i = 1, 2, ••• , 

b ; j = 1, 2, ••• , v , and each nij can take n differen~ 

po~itive integral values including zero. In particular, the 

n possible values for each nij may be taken as o, 1, 2, 

••• f ( n-1). A BIBD is a special aase of an n-ary design with 
b 

Jlij taking only the values 0 and 1 and E nij ni• being 



23 

equal to A. When can take the· three values 0, 1, 2, 

th~:: n-ar.,· design becomes what i,s kno.wn as a ternary design. 

For all the block designs mentioned in this Section, the 

incidence matrix is defined as the b>cv matrix N = (( nij )), 

where, ni j denotes the number of. times the jth element 

occurs in the ith block. In the case of BIBD, PBIBD and 

BBWD, nij = 1 or 0 according as the jth element occurs.or 

does not occur in the ith block. 

0.6. Chemical balance weighing designs 

In a chemical balance weighing design X , the elements 

xij can. assume the values +1, -1 or 0. As was pointed out 

i.1 Section 0. 3, the n >< p weighing design X for which 

X •x = ni will provide the minimum variance of (J 
2 /n for 

p . 

each estimated weight. A matrix X satisfying the above 

condition will be optimum with respect to Criteria (0.3.1) to 

(0.3.4). Such a matrix can be formed by choosing any p 

columns of what is knQwn as a Hadamard matrix. A Hadamard 

matrix Hn of order n is an nth order square matrix with 

' elements +1 and -1 such that Hn Hn = nln. A necessary 

condition for the existence of a Hadamard matrix Hn is 

that n = 2 or n:: 0 (mod 4). n is called a Hadamard 

number if Hn exi~ts. Literature on the methous of 
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construction of Ha,,amard matricen, the relation between 

Hadamard matrices and BIRD, the applicability of Hadamard 

matrices as weighing designs etc., can be found in Hadamard 

(1893), Paley (1933), Williamson (1944), Kishen (1945), 

Mood (1946), Placket and Burman (1946), Baumert, Golomb and 

Hall. (1962) and Hall (1967). A comurehensive account of 

Hadamard matrices and thP.ir applications is now avilable in 

Hedayat and Wallis (1978). 

When ·the ntl!flber of weighing operations is not a Hadamard 

number, the method of effectively augmenting a Hadamard matrix 

with it~ rows was studied by Kishen (1945) and Mood (1946). 

A substantial contribution towards this study was made by 

Banerjee (1949c). 

When n = p and. n is not ·a Hadamard number, Mood (1946) 

furnished some D-optimal designs for small values of p • The 

construction of optimal designs for the case n = p when n 

is not a Hadamard number was .studied by Raghavarao ( 1959, 1960) 

under the conditions given by (0.4.9). He showed that for 

odd n , designs X satisfying 

x•x = (n-1) I + E n n,n (0.6.1) 

are A- , D- and E-optimal. An nth order square matrix 

with elements +1 and -1 satisfying (0.6.1) was termed a 

P n matrix. · For the case n.:;: 2 (mod 4); Raghavarao ( 19 59, 1960) 
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showed that designs X satisf~ing 

X 'X = (n-1) I n (0.6.2) 

are A- and E-optimul and that designs X satisfying 

X'X = (n-2) In+ 2 Enn (0.6.3) 

are D-optimal. An nth order square matrix with each dia-

gonal element as zero and each non-diagonal element as +1 

or -1 , satisfying (0.6.2) was termed an Sn rna trix • 

Banerjee {1975) .used the notation T · for a square rna trix n 
of order n satisfying (0.6.3). Raghavarao (1959) proved 

that a necessary condition for the existence of Pn is that 

n = (d2+1)/2 where d is an odd integer. Thus, there ari 

many values of n for which Pn is non-existent, i.e., 

fo~ n = 3, 7, 9, 11, 15 etc •• Using the concept of the 

Hilbert norm residue symbol and the Hasse-Minkowski invariant 

details of which can be found in Hall (1967), Raghavarao 

(1960) proved a necessary condition for the existence of Sn 

as (n-1, -l)P = 1 for all primes p , where (a, b)p is 

the Hilbert norm residue symbol. Using this result it can be 
' . 

Q 

shown that Sn matrices are non-existent for n = 22, 34, 58,· 

78, etc.. It can be easily prov_ed t~at a necessary condition' 

for the existence of Tn is that n = { 4 + ( 3f2 + 4 )i } /3 , 
where f is an integer. Thus, Tn exists only for a few 

values of n like n = 6, 66, etc •• 
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Denoting an n x n design X satisfying the condi tiona . 
giTen by (0.4.9) as (n,s, ..\) w'b.ere s denotes the number 

of seroa in each column and A , the inner product of two 

columns, Bhaskar Rao (1966) proved the following results for 

odd n 1 

i) for n:. 3 (mod 4) and n>3, (n,0,3) provides a 

design that is A- and E-optimum, 

ii) for n ::o-15, (n,0,3) is. D-optimum and for n~l5, 

(n,0;-1) is- D-optimum and 

iii) for n:: 1 (mod 4) and n >5, when Pn does not exis~, 

(n,0,5) is A-, D- and E-optimum. 

Murty and Das ( 1967) discuss.ed the use of v-ary de signa 

in. T treatments and v(T•l) blocks in cqnstructing chemical 

balance weighing designs. Rao and Das (1969) provided two 

series of chemical balance weighing designs based on balanced 

ternary designs and compared their efficiencies with some 

existing designs. Saha and Dey (1973) also discussed the. use 

of balanced ternary designs in the construction of chemical 

balance weighing designs. 

De7 (1911) showed how optimum chemical balance weighin« 

designs co•ld be constructed b7 replacing 0 by -1 in the 

incidence aatrix of a BIBD. 

Gupta and .Daa (1977) showed how. to coabine two Pamill 
I 
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(A) BIB designs, i.e., BIB designs for which b = 4( r- A), to 
• 

get chemical balance designs with which the estimate of the 

weight.of each object can be obtained as rr 2 divided by the 

number of times the pbject is weighed in the n weighing 

operations. 

The use of balanced bipartite weighing designs as 

chemical balance designs has been discussed by me (Swamy, 

1982). 

0.1. Spring balance weighing designs 

As pointed out in Section 0.2, the elements of a spring 

balance weighing design can assume only the values +1 or 0. 

Uood, (1946) gave a method of constructing D-optimal 

spring balance designs when n = p:: 3 (mod 4 5 from Hadamard 

matrices of order (n+l). The method is as follows: Let 

(n+l) be a Hadamard number. Without loss of generality, 

let the elements of the first row and first column of Hn+l 

be each +1 • su~tract the first row of such a H from n+l 

each of the other rows and let the result be 

where, on, 1 stands for an n x 1 matrix with eaoh element 
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as 0~ The 'elements of will be 0 or 
t 

-2. 'By multi-· 

plying each row of K n,n by' -t obtuin a matrix sa tis-

fying the relation 

I Hn+ll = (-2)n ltn I 
Such an Ln , after it is ascertained that ltnl is positive. 

(by permuting rows if necessary) provides a D-optimal spring 

balance design. These design~are also A-optimal with each 

variance factor as· 4n/(n+l) 2 • 

Mood {1946) also provided some D-optimal spring balance 

designs for small values of n = p , by using a method given 

by Williamson (1946). He also constructed D-optimal desip;ns 

for n = 5, p = 4 and n = 6, p = 4. 

For n>p , the method of getting D-op~imal designs 

as given by Mood (1946) is contained in the following results: 

Let Pr,p be a matrix whose rows are all the arrangements of 

r +l's and (p-r) o•s, (Osrsp). Pr,p can be denoted by 

·p 
r itself p being always evident from the context. Let Q 

be a matrix made up of matrices Pr arranged in vertical 

order with Pr used 

d~sign for weighing 

nr times. Then, 

p objects in n.= 

Q is a spring balance 

Anr(~).wei~ingo. 
i . 

Mood proved that 

i) if p = (2k-l), where, k is a positive integer and 
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if n containu the factor (~) , then, jo•oj will 

be maximized when nk == nl(~) and all other n = 0, 

i.i) if p = 2k and· if n contains the factor (p+l)r 
k+l ' 

then, IQ'QI will be maximized when nk = ~k+l = 

nl(~:i) and all other nr = 0. 

These designs, however, require far too muny wei~hing one!a- · 

tiona. Banerjee ( 1948) pointed out that spring balance designs 

of equivalent efficiency but requiring a smaller.number of 

weighing operat~ons are provided by BIBD. The incidence mat

rix of a BIBD with parameters v, b, r,A, and A qan directly 

be adopted as a spring bqlance weighing design .to weigh 

p = v objects in n = b weighings. The design X in this 

case will be such that x•x will take the form (0.4.4) with 

c = r ~nd d = A. Thu~, using (0.4.6) to.(0~4.8), the 

variance factor for each object will be 

{ r + ( p- 2 ) 'A } I ( r- A ) { r + ( p-1 ) 'A } 

and the covariance factor between every pair of estimated 

weights will be 

- 'A I ( r- 'A ) { r + ( p-1 ) A } 

The advantage in L!-sing the incidence mutrix: of a BIBD as a 

weighing d~sign io that the solutions of thu equations lead

ing t~ the least-squares estimates of the ~eights can be 
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reduced to a routine procedure. The estimated weights are 
\ 

given by (see, Banerjee, 1951) 

n 

"' 
I: yi 

1 
zi 

i=l ··- -r-,\ r 

where, zi' i = 1, 2, ... , P. are the elements of the vector 

X'~ • The Ln designs of Mood (1946) oan be seen to be in

cidence matrices of symmetrical BIBD with parameters v = b = 
n, r =A = (n+l)/2 and 'A = (n+l)/4. 

If·(n+l) and· (n+5) are Hadamard numbers, Ln and 

Ln+4 exist. These will provide suitable designs for weigh

ing n objects in n weighings and (n+4) objects in 

(n+4) weighings. The method of constructing an (n+m)X n 

design for m = 1, 2, 3, the problem of adding same or dif

ferent rows of Ln to Ln and a comparative study of the 

variance factors for the different situations were dealt 

with by Banerjee (1949b, 1950b). 

Baner~ee (1952) studied the use of partially balanced 

incomplete block designs as spring balance weighing designs. 
. . 

~e incidence matrix of a PBIBD may be singular even when 
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b~v. Thus, all PBIBD can not provide non-singular designs. 

Banerjee (1952) pointed out th~t a certain efficient spring 

balance design provided by Mood (1946) is nothing but a 

PBIB:O'. 

0.8. Repeated welghing designs 

When a symmetrical BIBD is used-as a spring balance 

weighing design to estimate the weights of n -= p objects, 

ao degrees of fre~dom will be left for estimating the error 

Tariance. To oiercome this difficulty, Banerjee (1948) 

suggested that the design could be repeated. 

•repeated' design will _be a 2p )( p matrix. 

Thus, .~, 
t t .~ .. 

~'W when the 

BIBD used is not symmetrical, 'repeating•~he design can be 

resorted to, ,to get more degrees of freedom for eatimating 

thi:t error _variance. Dey (1969} pointed out·that if the 

parameters of the symmetrical BIBD satisfy the condition 

b > 2r, then, combining the incidence matrices of the BI~D 

and ita complement would be better than repeating the BIBD. 

Kulahreshtha and Dey (1970) suggested yet another alter

native to the •repeated' design for the case when the pre

cision of aome of the tpstimates could be sacrificed to se-. 

cure more precision for the other estimates. Banerjee (1974) 
,_ . 

auggeated one more alternatiTe - that of coJ~bining the oo11-· 

pleiaentary _BIBD with itself - and JPade_ a comparative studJ ~ 
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~ 

of the four different de~igns. 

For the chemical balance ~roblem, Dey (1972) suggest-

ed four alternatives to the 'repeated' design and compared 

them with respect to two particular series of BIB designs. 

Swamy (198lb) has suggested yet another alternative to those 

provided by Dey (1972). 

To 'obtain degrees of freedom for the e.rror variance, 
i .. , ~ 

Das and Giri (1979) suggested the use of truncated incomplete 

BIB designs. Such designs are obtained by omitting from the 

different ~locks of a BIB design a certain number, say q, 

of treatme·:rits. The resulting design will be a balanced de

sign (any two treatments will continue to appear together ~n 

A blocks) for (v-q) treatments in b blocks of unequal sizes, 

each treatment beirig replicat~d r ti~es. 

0.9. Factorial approach to the weighing problem 

tempthorne (1948) discussed the factorial approach to 

the weighing problem. The concept can be illustrated with 

the help of the following example: Consider a 23 factorial 

experiment with the eight treatment combinations as ( 1), a, 

b, ab, c, ac, be, abc. (A clear account of factorial de-

signs may be obtained from Kempthorne (1952))._... A half re

plicate of the 23 experiment w~ll consist of only .four 
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treatment combinations. If we decide to include those treat

ment combinations w~ich have an even number of letters in 

common with ABC, then, the treatment com·binations to be 

·included are ·(1), ab, ac, be. Interpreting the presence of 

a letter a, b or.c as including the corresponding object 
• 

on.the lett pan and, the absence of a letter as not.weighing 
•' 

the corresponding object, 'fi& have (1) representing the wefgh-

ing operation on an empty pan,· ab representing the weighing 

operation iJ?- whi.ch. the first two objects are weighed etc •• 
. 

The estimated weight of each ouject will be half of tho 

difference between the readings of those weighings contain-

ing that· object and~those, not containing it. 

of the estimated weight of each object wi~l b~ 

wh~re, rr 2 i., the variance of each weighing. 

The variance 

4 cr 2/4 = cr 2, 

If the absence 

of a letter is interpreted as putting the corresponding ob

ject on ~he right pan, theh, the precision can be increased. 

·Here, the estimated weight of eaoh object will be one fourth 

of the di.fferenoe between the readings of those weighings 
.. 

containing that o·bject and those not containing it. The 

variance ot ,eaeh estimated weight will now be 0'~4. 

~emptborn~ (~948) pointed ~ut that although the spring 

lltAl~~~•· '"stgn1, £n ot Mood ( 1946) furnishe~. somewhat 
I 

sul-l-fn' var:iianqo tol' ·tht estimated weights, they had. the 
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disadyantage that ~he estimates were eorrelated, whereas, the 

estimates furnished 1Dy the frac.tional replicates were ortho-
. \ 

. . 
gonal. However, Banerjee (1949a) observed that the designs 

li n of Mood are virtually the same as the desi~s furnished 

_by frac~;onal replicates. The latter designs take account 

of the bias and if the weighing operation corresponding to 

t~e determination of bias is omitted (in case the balance is 

free from bias), the resulting design will be the same as 

Ln • If the design Ln is adjusted to suit estimation of 

bias in a biased. spring balance, the estimates of the weights 
'· 

will turn out to be orthogonal. Thus, in the example based 

on half-replicate of a 23 design, the design matrix is 

seen to be 

0 0· 0 

1 1 0 

1 0 1 

0 1 1 

If (0 0 0) is omitted, thia becomes Lr 
Kempthorne ( 1948) ·suggested the poasibili ty of using 

a three-fourth ·replicate. as a waighbtg design. Pollowing 

this suggestion, Banerjee (1949a, 1949b) discussed the use 

of fractional replicates of the form ( 2P -l)/2p ( 1 ~ (3 Sa) 

aal 4eter.ined the Yarianoe factors on·uaing ••ch a 
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fractionai replicate. 

0.10. ·Singular weighing designs 

Due to a variety of reasons ( s.ee Raghavarao ( 1964)), an 

n.xP 
.• 

design matrix X chosen for a certain weighing problem 

' might turn out to be of rank less than p , thus yielding a 

singular weighing design. When a well known block design is 

used as a weighi.ng design, the parameters of the chosen design 

may be such that ·the .resulting we~ghing design is singular 

(s~~ Banerjee (1966a), Dey (1971) and Swamy (1982)). 

When the design matrix X in the model (0.2.1) is not 

of full raDk, the normal equations X'X ~ = X'7 for esti-- . -
mating th~ weights ·~ by the least-squares method will not 

admit of a unique solution. The normai equations have many 

solutions and to get any one of them, a generalized inverse 

G of X'X can be found and the corresponding solution takeB 

a a 

(0.10.1) 

A generalized inTerse (g-inverse) of a matrix A is defined 

aa aey matrix G that satisfies the equation · AGA = A. Aa 

mari7 generalized inTerses of x•x. exist, the solution 

(0.10.1) ia no~ unique. p0 should not be taken as a~ eat~--
aate of ~ •· It is just a solution of the normal equations. 
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A (linear) function of the weights 131, 132'' ••• , 13p is 

defined as estimable if it is identically equal t6 some 

linear function of the expected value of the vector of 

observations y_ • Many necessary and sufficient c.ondi tiona 

for the estimabili ty of the line_ar function ~ ·~ where, ,c' 

is a 1 X p vector, exist, one of them being that there 

exists an n )( 1 vector t such that 

c• = t'X < 0.10.2} 

For obtaining the best linear unbiased estimate (b.l.u.e) 

and its variance, for an estimable function, one makes use 

of Gauss-Markoff theorem which states that if ~·~ is an 

estimable function, its b.l.u.e. is c•~0 with variance 

.£ ~ Gco-2 where, .[!0 
. is any solution to th~ normal •equations 

using any generalized inverse G of x•x. Both the estimate 

and its variance will be invariant to the choice of G and ~0 • 

When a singular n x p weip:hing design X is of rank 

r ( r < p) , by assuming without loss of generality that the 

first r columns of X are independent, Raghavarao (1964) 

obtained the necessary and sufficient condition for the weight 

of the ith object i = 1, ?, ••• , p, to be estimable as 

( . 
- l. 

- 0 - ( p-r), 1 , where, (. 
-1 

is the ith column vector 

of order ( p-r) of H' with H defined as (Xr • xr>-lxr 'X(p-r)·' 

Xr and x(p-r) stc.nding for the nxr and n X ( n-r) 
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matrices given by X = [ ~r. X(p-r)].. Prom this it rollowe 

immediately that the"weight of':the (r+i)th object, i. = 1, 

2, ••• , (p-r), is not estimable. 

When an n x p weighing design X is singular, of rank 

r (say), X must be augmented by at least (p-r) additional 

rows to get a resulting design that will be of full rank. The 

method of adding a row that will result in· an optimum design 

(:D-optimum) was discussed by Raghav_arao ( 1964) for the case 

r = (p-1). Banerjee (1966a) considered the.problem when the 

deficiency in the rank is more than one. Hazra and Banerjee 

(1973) dealt with the same problem by making use of the uniqu~ 

Moore-Penrose g-inverse. Literature on g-inveraes ts avail

able in Rao and Mitra (1971) and Searle (~971). 

Comparison of two singular weigh~ng designs will be 

meaningful only with respect to a function ~' ~ that is 

estimable with both the designs. The design that provides 

· a smaller variance for the estimate of £ • Jl will naturally 

be considered superior. 

0.11. Estimation of total weight 

. 
Banerjee {1966a) observed that a design that is optimua 

with respect to the estimation of the individual weights need 

not be so with respect to the estimation of the total weight. 
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To substantiate this observation he made use of the singular 

weighing design 

1 1 1 

1 1 1 

1 -1 0 

1 -1 0 

With this design the total weight is estima.ble (refer Section 

0.10) and the variance of the total weight is cr~2, whereas, 

·if three columns of·a Hadamard matrix H4 are used, the 

variance of the estimated total weight works out to 3a2/4 

(variance of each estimated weight is rr~4 and the estimates 

are uncorrelated). To compare two weighing designs with res

p.eot to the estimation of the total weight one has to deter-
·. 

mine the sum· of all the elements of ~ g-inverse of X'X for 

each of the designs and the design for which this sum is 

small~r is superior (see Criterion 0.3.5 and the last para

graph of Section O.lO). 

Sinha (1972) discussed at length the problem of obtaining 

spring balance weighing designs for estimating efficiently 

the total weight of a given set of objects, retaining the 
. 

simultaneous estimability of all the individual weights, under 

the reetri:ction tha
1
t at most k objects can be weighed at a 

time. Dey.and Gupta (1977) discussed.the problem of estima-

. 
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tion of the total weight, under the same restriction, for 

singu~ar spring balance weighi~ designs. The prob1em haa 

been considered in a more general sense by SW&m7 (1980). 

A similar problem under a different restriction for chemical 

-balance designs has been studied by Swamy (198la). 

0~12. The case when E (!!.') is different from 

When E (!, !.') • V, where," V is an n >< n non-singular 
2 ·•atrix of known.elements, not necessarily the sa.e ae ~ 1

8
, 

the generalized least-squares estimate of ~ is obtained· aa 

(0.12.1) 

with 

· Cov(5) • (X' v-l Xj -l 

If E(!!') 
2 . 2 2 

= d i ag ( C1 1 ' C1 2 ' • • • ' 0' n ) 

(0.12.2) 

2 2 
where diag ((11 ' a2,' 

... , a; ) stands for a diagonal matrix with diagonal ele-
2 2 2 2 2 . 

··~nts as 0'1, 0'2, ••. , O'n respectively, and al , a2 , ••• , 
0':, are unknown, estimates of these can be obtained ueins 

variance components techniques and these estimates ma7 be ... a 

to find the generalized least-squares estimate of ~· Bxce~~ 

• 
lent literature on variance components ~sti~ation, Minque 

theory and allied topics is available in Graybill (1961), 

Rao (1970) and Searle (1971). The elementa of the error .... 

Tee t.or !, COUld be assumed to be COIIpriaiDg of tWO C~p01l,Jlt8 
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(to suit a special situation) and tne error variances oould 
. ~ 

be estimated following the variance components technique. 

·Banerjee (1965) studied the weighing problem under the 

. assumption that the errore are au~ocorrelated, i.e., taking 

.i<E (.!,!') = cr 2v , where, 

1 p p2 n-1 
• • • p 

P. 1 I> • •• 
pll-2 

v • 
. . . . • • • • • • • • • • •• 

n-1 n-2 n-3 1 I> I> p I ••• 

Raghavarao, Sodhi and Singh (1968) made use of the 

assumption that the variance of the errors will be propor

tional to the total weight on the balance;, i~e., E (!!') • 
p 

o diag (z1 , z2 , •• ·., zn)' _where, zi ,· LxijPj, and o is 
j=l 

the constant of proportionality. 

0.13. Fractional weighing designs 

Consider a Hadamard matrix Hp. This would be the 

best chemical balance design to estimate the weights of p 

objects in· p weighings. But, .due to some reason like lack 

ef resources, tima etc., one ma7 .. ha'Ye just p1 ·( < p) weigh

ing operatio~s corresponding to p1 rows of B) . !his 

»1 x p design is· a fraction of Hp and ia a tractional 
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weighing design. With such a design which is singular, one 

' can not obtain unique and unbiased estimates of all the in-

divid~al weights. But, fractional weighing designs under 

. randomized procedures developed by Zacks (1966) provide un

biased estimates for any linear function .=, • ~ and obviously, 

ther~fore, for any weight pi, i = 1, 2, ••• , p. Some re

sults analogous to.those obtained by Zacks (1966) for randoa

ized fractional weighing designs were obtained by Baner~•• 

(1966) for the non-randomized fractional weighing designs •. 

0.14. Biased estimation in weigping designs 

Sihota and Banerjee (1974) applied the biased estimation 

procedures provided by Hoerl and Kennard (1970) for the 

ma~tiple· regression model, to the weighing problem. 

0.15• R!oent work on weighing designs 

Cheng (1980) has developed a theory of optimum deaip•· 

which embraces the results of Raghavarao (1959' 1960) and 

Bhaskar Rao (1966) as immediate oo~sequences and can be uae4 

to prove the optima11 ty of a.ome. weighing designs .OTer all 

possible desi~s with respect to a Tery general olasa of 
. -,/ 

oriteria. He has shown with thebelp Pf a ~ounter-e~aaple 

that there ia no guarantee that the beat design in .. 1 n~p 
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is really optimal over ~ n,p ' where, ~ n,p is the set 

of a],l possible nxp weighing designs X and :6n~p is 

the set of all nxp weighing designs X for which x•x 
is of the form (0.4.4). 

· Galil and Kiefer (1980) have proved some new results. 

on optimality of weighing designs. They proved a result 

characterizing optimum designs when n~(2p-5) (for nzp). 

·With the solutions provided by them for certain hitherto 

unsolved cases, the list of D-optimum designs for all 

p~l2 (for all nzp) is now complete. 




