CHAPTER I

INTRODUCTION

1.1 Two-phase Flows and Their Importance

&Fluid flows with particulate suspensions, when the
suspended matter may conéist’of solid particles, liquid
droplets; gas bubbles or combinations of these, are com-
monly termed dusty gas flows or dusty fluid flows. They
are also referred to as two-phase flows, since they in-
volve a composite of two phases or two materials with
different-distinguishable properties - one phase being
the fluid medium which is a continuous phase and the
other phase being the particulate suspensions which are
scattered throughout the fluid medium and hence known as
the dispersive phase or disérete phase or simply parti-
culate phase. The fluid medium can be eithér gas or
liquid.\ When the fluid medium is & gas, the particulate
phase may consist of solid particles or_liguid droplets
or both. When the fluid médium is & liquid, the parti-
culate phase may consist of solid particles, gas bubbles
or liquid droplets which are immiscible to the fluid
phase. In general, a multi-phase flow consists of a
f£luid phase or fluid medium and a particulate phase of

any number of chemical components.



(?he flows of fluids with suspended material par-
ticles abound in nature, classiqal examples being pollu-
tion of air and contamination of watersz The earth's
atmoéphere'is a2 predominantly gasecus envelope of air
surrounding - the ezrth and it contains solid
particles and liquid droplets. Besides it is also being
constantly polluted by & number of dust particles like
carbon suit, sulphur and many other toxic elements which
arise as inevitable consequences and natural by- products of
rapid industrialization. The natural waters around us
are contaminated by sewage solids which are being duuped
into seas, rivers and harbours. Industrial activity, es-
pecially pulp and paper production, food processing and
chemical manufactur%ng,‘genefatesz? wide variety of waste
producte\that are being discharged into flowing waters.
Thus newviypes of wastes continue to appear as new tech-
nology develops and these find entry ihto the eaﬁth’s’
atmosphere ar into the natural waters of seas; rivers and
lakes. In order to minimise and control these grave
problems of pollution of alr and water a knowledge of the
behaviour of two-phase flows or multi-phase flows is

necessary.



Problems of two-phese flows arise in many engi-
-neering and industrial applications. In heat transfer
technology, fluids embedded with dust particles are used
in gas-cooling chambers to enhance heat transfer proces- |
ses, &8 it is well known that solid particles are better
conductors of heat than liquids. Dusty‘gas flows assune
importance in such engineering problems as fluidization
(flou§;through packed beds), sedimentation, powder tech-
nology, flows in rocket tubes where small cerbon or
metallic fuel partiéles are present, aerosol filtration,
gas purification, motion of suspension and slurries, and
in the process by which raindrops are formed by the
coalescence of small droplets which might be considered
as solid particles for the purpose of examining their
movement prior to coalescence. Similar situations can
also be noticed in the flows of fluids containing dis-
solved micro-molecules, fiber suspensions, latex parti-
cles in emulsion paints, reinforcing particles in poly-
mer melts and rock crystals in molten lava. A knowledge
of two-phasé flows is of vital importance in petroleun
industry and in the purification of crude oils. Further,
problems concexrned with atmospheric fall out, batch settl-
ing, rain erosion of guided missiles and aircraft iping
are some 01 the areas where the dynamics of dusty gases

play a prouinent role. Other imporiant applications



involving dust particles in boundary layers include soil

salvation by natural winds, lunar surface erosidn by the

exhaust of a landing vehicle and dust entrainment in a

cloud formed during a nucleaf explosion. <More recently,

the revolutionary growth in the field of propulsioﬁ,and
' bos rentad ’

combustion)had its impact and-stimulated new interest

“in the gas-particle flow phenomena;

(} knowledge of dusty fluid flows is useful to some
extent in understanding the rheology of blood flows
through capillaries, where red blood cells can be regarded
as rigid particles embedded in the plasma which is a
Newtonian fluiq}' Thus by treating blood as a dusty fluid,
it is possible, for example, to determine the effect of
red corpuscles on the velocity distribution of the plasma
and to assess the loss of pressure head in the capillaries
due to the presencé of red cells. These informations
wpuld help in the diagnosis of diseases connected with the
circulatory system and in the design of such medical
apparatuses as blood pumps and oxygenators. Another
biological situation where the study of two-phase flows
agssumes importance is the phenbmena of particle deposi-

tion in the respiratory tract.

QBesides all these examples drawn from nature,

écience, technology and biology, recent space-craft



observations have confirmed that dust particles play a
prominent role in the dynamics of the Martian atmOSpher%>
This planet is periodically swept by huge dust storums.
Besides, wind-driven particles.have played an important
role in the shaping of the MértianhsgrfaCe (Pollock
(1975)). (Spaeemresearch hes a1§;{QQGWn_that Venus is
covered bfza dense layer ofi clouds consisting of suspen-
ded particles of different concentrations and sizeg)
(Schubert and Covery (1981)). PFurther, scientists are
always concerned about the meteoric dust hazards to space
stations. @Thus with the advanceument of space technology,
the dynamics of dusty gases has found applications in
such extra-terrestrial fields as the study of other

planets and also in the cosmological theories of evolu-

tion of stars and planets from dust-laden gases)

1.2 Survey of Literature

The study of the flows of fluids with suspended
solid particles appearg to have been initiated by Stokes
(1851) who examined the resistance of a single solid body
(spherical pemdulam bob) moving relative to a fluid (eir)
in which visecosity was taken into account. The relation-
ship he diséovered is the familiar Stokes' drag law and
it has been found to apply to.flow situations in which a

number of solid particles are present, provided the



particles are far enough apart on the average that their
motion is not affected by the mutual interaction of in-

dividual particles.

ILater Einstein (Landau and Lifshitz (1959)) inves-
tigated the resistance td shear of a suspension of small
spherical particles immersed in a continuous fluid and
showed that the apparent increase in viscosity of the.
suspending fluid is related to the volumetric concentra-
tion of solid particles by a simple proportionality
constant. . The Einstein's formula for suspension visco-
sity has since been used to analyse the motion of suspen-
sions in shearing fields of flow. Like Stokes' law, Eingtein's
formula is also applicable to the case when the suepénded
particles are sufficiently far apart that the motioa of
each one of thew is not affected by the motion of others.
¥instein's viscosity theory for suspension of sphefical
particles was extended by Jeffery (1922) to particles of
ellipsoidal shape. Guth and Simha (1936) further extended
Jeffery's work by considering wall effects and interaction

between particles on the apparent viscosity of suspensions.

Hoenig (1957), Carrier (1958), Soo (1961) and others
have done a lot of pioneering work on the effect of dust

particles on shock weves, Wwhile Hoenig (1957) examined the



acceleration of dust particles when a shock wave of cons-
tant strength enters a dust-laden gas; Carrier (1958)
considered the effect of stationary plane shock configu-
retion iﬁ a dusty gas. Soo (1961) formuiated the basic
gas dynémic equations involving suspended solid particles
by taking into account momentﬁm and heat transfer between
gaseous end solid phases and applied them to normal shock
problems. Later Rudinger (1964)4analysed‘some properties
of shock relaxation in gas flows carrying suall particles.
Spécial mention must be made of Marble's ;apers (1962,
1963) on the study of shock waves and the Prandtl-Meyef

- expansion in dusty gaeses.

(The observation that adding dust to air flowing in
turbulent motion through a pipe can considerably reduce
the resistance coefficient, has been reported by Sproul%)
(1961). A similar report that the serodynamic resistance
of a dusty‘éas flowing through a system of pipes is less
than that of & clean gas has also been made by Kazakevich
and Krapivin (1958). These observations can be expressed
as saying that the pressure difference required to main-
tain a given volume rate of flow is reduced by the addi-
tion of dust. It may be noted that the increased density
of a dusty gas should, all other things being equal,

require a larger pressure difference to maintain a given



volume flow réte. Sproull's interpretation that there
will be reduction in the viscosity of a dusty gas as cou-
pared Qith a clean gas contradicts the Einstein's formula
for the wviscosity of a suspension, according to which the
viscosity of a dusty gas should be increased by & factor
proportional to the concentration by volume of the dust
particles. (Saffman (1962) gave a uore plausible expla-
nation by s;ating that dust damps the turbulence. A dust
particle in air, or any other gas, has a wmuch larger
inertia than the equivalent volume of air and will not
therefore participate as readily in the'turbulent fluce-
tuations;§ The reduction of the intensity of the turbu-
lence leéds to a reduction of the Reynolds. stresses and

the force required to maintain a given flow rate is

likewise reduced.

<?ince the problem of turbulence is related to the
stability of laminar flows, Saffmen (1962) studied the
effect of dust particles on the stability of a laminar
flow of a gas, in order to see how dust may affect the
critical Reynolds number for transition from laminar to
turbulent flow. He derived a wmodified Orr-Sommerfeld
equation for this purpose and showed that the addition
of fine Aust destabilizes a gas flow, while the addition

of coarse dust has a stabilizing effect.
A



To describe dusty fluid flows nathematically,
Saffman (1962) made some simplifying assumptions regarding
the motion of dust particles in the fluid and formulated
‘a separated flow model in which separate'equations are
written for each phase (On account of its relative
simplicity, Saffman's dusty gas model has 0pened up a new
and exciting era in the field of fluid dynamlcs. For the
past ﬁwo decades there has been a spate of research acti-
vity in the area of dusty fluid flows) a brief resume of

which is given below.

Michael (1964) solved numerically the Orr-Sommerfeld
equation derived by Saffmaq}and found that the dust par-
ticles modify the neutral stability curves. Michael (1965)
algo studied the Xelvin-Helmoltz instability of a plane
vortex sheet in a dusty gas. Further he (Michael (1968))
considered the steady motion of a sphere in a dusty gas
and found that in the inviscid model there exists a dust-
free layer adjacent to the sphere, while in the viscous
model the dust-free layer is preserved only when
ofR >> 1, where ¢ denotes the Stokes number and R
is the radius of the sphere. Drew (1979) discussed the
stability of a Stokes layer of a particle-fluid mixture
taking into consideration the buoyancy force on the par-

ticle~phase and derived a set of Orr-Sommerfeld equations
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with modified Reynolds number. The presence of fine dust
particles is found to destabilize the Stokes layer flow.
In the case of coarse dust, for 1low mass concentration
and for sufficiently large values of the particle rela-

xation time, it is found that the flow is unstable.

A1l the works on the stability of two-phase flows
mentioned above are based upon linear stability eanalysis
in which the disturbances are considered to be very small
so that the non-linear terms are neglected. However
Dandapat and Gupta (1976) studied the stability of flow of
a dusty gas for arbitrary non-linear disturbances usingv
the energy wethod due to Serrin (1959). They derived an
improved universal stability estimate and showed that the

presence of dust particles destabilizes the flow.

While Michael (1968) considered the flow of a dusty
gas past a fixed sphere, Sambasiva Rao (1973) analysed the
steady motion of a sphere in a dusty gas, otherwise at
rest and showed that when a nén—singular perfurbatidn of a
potential flow is assumed, the dust particle concentration
beconmes logarithmically infinite to the front stagnation
point of the sphere. Further, he observed that the dust
particles cannot reach the sphere except at the front
stegnation point, there being a2 dust streamline emanating

from the point which delineates a thin dust-free layer
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ad jacent to the sphere. 1In the case of dusty fluid flow
past a fixeaﬁsphere, Michael (1968) showed that the par—
ticles do not collide with the sphere until the Stokes
number o is greater than & critical value O orit = 1/12.
Treating the problem of steady motion of a circular
cylinder in a dusty gas, recently Rukmangadachari (1981)

observed that for a circular cylinder o = 1/8.

crit
Michael and Norey (1970) considered the probleu of slow
motion of a sphere in a two-phase medium and observed

that the particles which lie on the surface cannot escape
from the surface. Miller (1969) treated the problem of
motion and number density of particies, initially at rest,
under gravity in an incoupressible, viscous fluid round a
vertical, solid circular cylinder in oscillatory rotation
and developed methods for finding trajectories and number
densities of the particles. Nirmela and Arunachalam (1978)
studiéd the primary flow due to the rotatory oscillations
of two spheres in a dusty viécous fluid using Stokes'
linearization technique and bipolar coordinates and ob-
served that for steady rotation the torque on the sphere

is not affected by the dust particles.

Michael and Miller (1966) investigated the motion
of a dusty fluid occupying the seui-infinite space above
& rigid plane boundary when the plate executes simple

harmonic oscillations and when it starts impulsively from
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rest with uniform velocity. The change in phase velocity
and the decay of oscillatory waves are obtained as func-
tions of the mass comcentration XN . It is shown that
for large time, the shear layer thickness decreases by a
factor (1 + N)” /2, Datta ana Jena (1976) extended
the work of Michael and Miller to the fldwvof a2 dusty gas
induced by an oscillating flat plate in a rotating frame
of reference. Jana and Datta (1977) also solved the
problem of flow of a dusty gas over an infinite plate
executing non-torsional oscillations in a rotating frame
of reference. The steady-state solution reveals the
existence of multiple boundary layers, the. thickness of
which decrease as the mass concentration perameter in-
creases. Further the presence of dust particles elimi-
nates thé occurrence of resonance in the fluid motion.
ﬁsing regular perturbation technique Nag (1980) solved
the two-dimensional flow of a dusty fluid induced by
sinusoidal wavy motion of an infinite wavy wall and found
that the oscillations decrease rapidly along the trans-

verse direction.

Pluid flows between parallel plates constitute an
important class of problems in fluid dynamics, since they
approximate to flows that are frequently encountered in

many engineering disciplines. Hence a lot of work has
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been done in this direction for dusty fluid flows, like
those of Vimala (1972), Dube and Siﬁgh (1972), Sacheti
and Bhatt (1972), Sharwma (1975), Singh (1977), Mathur

et al (1976), Nag et al (1979), Dube and Sharua (1975),
Ramana Prasad and Pattabhiramacharyulu (1980, 198%1),

Mitra and Bhattacharyya (1981). Mitra (1981) considered
the oscillatory flow of a dusty gas between parallel
plates in a2 rotating fraime of reference. Verma and
Sarangi (1981) studied the unsteady flow of a dusty fluid
between two wavy walls with roughness along their length,
whase equations are taken in the form of Fourier series
with the assumption that & , the coefficient of rough-
ness, is small and obtained velocity profiles to the first

order of E; .

Realising the importance of fluid flows through
circular geometries, dusty fluid flows through circulear
pipes under different iypes of pressure gradient have been
analysed by many researchers like Rao (1969), Tewari and
Bhattacharjee (1973), Singh and Dube (1975), Kishore and
Pandey (1977) and Aruncchalan et al (1976). Singh and
Pathak (1977, 1977) analysed the unsteady flow of a dusty
fluid through a uniform tube with sector of a circle as
cross-section under the influence of (i) a constant pres-

gsure gradient and (ii) an exponential preasure gradient
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with respect to tiuwe, and inferred that in case (i) the
velocity of'dusty fluid is greater than that of dust
particles, while in case (ii) the velocity of dust par—
ticles is greater than that of the fluid. The general
time-dependent flow of a dusty gas in cylinders with
circular and sectorial cross-sections has been discussed
by Gupta and Gupta (1977), when the pressure gradients

»

are arbitrary functions of time.

Dusty fluid flows through the annulus between two
infinite coaxial cylinders has attracted the attention
of many investigators. Michael and Norey (1967) studied
the laminar flow of a dusty gas between two rotating
cylinders, by assuming the relaxation time of dust to be
small and considering the ratio of the time scales, on
which the gas velocity and the mass concentratidn of
dust change, to be both large and small. They obtained
solutions under verious boundary conditions. Pathak and
Upadhyay (1981) observed that the flow of a dusty gas
between two rotating coaxial cylinders is always stable
if the Rayleigh's criterion is satisfied. PFurther they
discussed the principle of exchange of stabjilities and
solved the characteristic value problem under the narrow-
gap approximations. Other significant contributions are

those by Girishwar Nath (1970), Devi Singh (1973), Gupta
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and Gupta (1975), Rukmengadachari (1978) and Mitra (1979).
Gupta and Sharma (1978) analysed the unsteady flow of a
dusty viscous fluid through long confocal elliptical ducts
under an arbitrary time-varying axial pressure gradient,
by repeated use of the finite Mathieu transform and the

Laplace transform.

Quite an amount of extensive work has been done in
dusty fluid flows through pipes of different geometries.
In this connection mention may be wade of Crooke and Walsh
(1974) who studied the flow through an infinitely long
pipe with rectangular, circular énd arbitrary cross-sec-
tions, Janaki Raja et al (1978) who dealt with flow bet-
ween parallel plates, flow through an equilateral triangu-
lar duct and flow through an elliptic duct, under a perio-
dic pressure gradient, Arunachalam (1979) who analysed the
flow through a éylinder of triangular cross—-section under
a sinusoidal pressure gradient and an exponential preésure
gradient and Rukmangadachari (1981) who considered the
flow through & cylinder of rectangular cross-section under

time-dependent pressure gradient.

There are some authors who considered other types
of problems. Zung (1969) investigated the flow of a
fluid-particle suspension over an infinitely large disk

rotating with a constant angular velocity. ‘Sone (1972)
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considered the steady flow past a body fixed in a uniform
flow of a dusty gas. Crooke (1976) developed uniqueness
criteria for the solution of the steady state flow prob-
len with Saffman's model when the nu@ber density of the
particles is constant and found that the criteria depends
oﬁ the physical parameters of the system. Surendra Prasad
(197S) developed techniques for the measurement of film
thickness in annular two-phase gas-liquid flows and Gupta
(1979) studied the unsteady Hele-Shaw flow of a dusty
viscous fluid. Palaniswamy and Purushotham (1981) showed
how the stability of sheer flow of stratified fluids with
fine dust is dependent on the value of the local Richardson
number. Rukmengadachari (1979, 1983) considered the dusty
viscous flow due to torsional vibrations of a disc and
also the problem of viscous drainage on a vertical flat
plate in a two-phase medium. In the latter case he found
that due to the presence of dust there is an increment in
the inertial contribution to the film thickness, which is

proportional to the mass concentration of dust.

The brief survey given above reveals that the work
done in dusty gas flows on the basis of Saffman's uodel
conprises mainly of unsteady rectilinear probleus, save
the studies of steady motion of a sphere by Michael (1968,
1970) and Sambasiva Rao (1973). As can be seen from‘the
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Saffman's equations, a study of the steady dusty viscous
flow problens under‘the usual Stokeé' linearization schene
by completely neglecting the convective terms frou the
equations, cannot be done, since in such a case both the
fluid wvelocity and dust particle velocity become equal and
the solutions become trivial. ‘So to tackle steady flow
problems, the non-linear equations have to be linearized by
perturbation techniques such as the one used by Michael
(1968), or they have to be solved by using somec numerical

methods.

Boundary layer theory for a dusty gas past an infi-
nite plate in the primary stages of the motion has been
initiated by Chakrabarti (1971). Gupta and Pop (1975)
solved the initial value problem of unsteady boundary layer
flow generated in a dusty viscous liquid bounded by an in-
finite flat plate when both the liquid and the plate are
initially in a state of rigid body rotation about an axis
normal to the plate and theﬁ the plate is impulsively star-
ted with a uniform velocity in its own plane. TPurther the
general featﬁres of the unéteédy boundary layer with par-
ticular reference to the effect of rotation thfough iner-
tial oscillations and the establishment of Ekwan boundary
layer are discussed by them. Dafta and Nag (1979) studied

the boundary layer flow of a dusty gas past a flat plate
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when a small oscillatory flow is superimposed on the free
stream flow. The velocity fields for the gas and particle-
phase are separated into steady and unsteady parts. The
steady state part of the solution implies that the boun-
dary layer thickness increases with increése of either
the mass concentration or the size of the dust particles.
Srivastava et al (1980) investigated the boundary layer of
a density stratified fluid with a suspension of particlesg,
when the wmotion in the fluid,-occupying the semi—infinite
region above a flat plate, is induced by potential flow.
Datta and Mishra (1980) used Karman-Pohlhausen method to
solve the two-dimensional stagnation point flow of a dusty
fluid near an oscillating plate and found that the boun-
dary layer thickness increases when the mass concentration

of dust increases or when the relaxation time decreases.

' Most of the literature on the subject of dusty gas
flows restricts discussion to uniforir dust particle dis-
tribution. Allowing the dust particle distribution func-
tion, i.e. the number density of dust particles N, to
be variable, Barron (1977)_considered the case where the
velocity of the dust particles are everywhere parallel to
that of the fluid. He showed that the only possible flows
are radial flow and flow in parallel straight.lines and

concluded that in the case of radial flow the dust
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particle distribution cannot be uniform as is possible in
the case of flow in parallel lines. Following Barron,
Purushotham and Reddy (1978) discussed the kinetic and

kinematic properties of plane viscous dusty fluid flows.

Very few authors paid attention to the discussion
of the dissipation of energy or heat transfer in two-
phase flows. Studying the flow induced by an oscillating
flat plate in a dusty gas, Liu (1966) not only obtained
the gas and particle velocity profiles and found the shear
stress on the plate but also discussed the uechanical
energy dissipation. Ahmadi and Shahinpur (1974) investi-

gated the decay of the kinctic energy of a dusty gas.

Attempts were also made to study the magnetic
effects on the dusty flui¢ flows. Baral (1968), who con-
sidered the plane parallel flow of & conducting dusty gas,
appears to be the first to have made such an attempt. In
formulating the probleu, the fluid is assumed to be elec-
trically conducting, while the dust particles are non-
conducting. Since the solution given by Baral was in-
correct, Ramana Rao and Rammurthy (1972) gave a correct
approximaté solution to the problem when the magnetic
lines of force are fixed relative to the fluid and subse-
quently, in another note Ramana Rao (1973) solved the

same problem when thc magnetic lines of force are fixed
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relative to the plate. Ramana Rao and Kawa Sastry (1973)
by iteration on fhe maés concentration of dust, solved
also the problen of flow past a plate., Yang and Healy
(1973) analysed the Stokes probleums of a dusty, conduct-
ing fluid over an infinite plate, set into motion'in its
plene by impulse and by oscillation, in the presence of

a transverse magnetic field. Other significant studies
in the area of dusty conducting fluid flows are those

by Singh (1977), Dubey (1978), Dixit (1978), Agrawal et al
(1979), Gupta and Agrawal (1980), Guha (1981), Nirwala
(1981), Sastry and Seetharamaswamy (1982).

Much earlier to the studies uentioned above, Nayfeh
(1966) investigated the oscillating two~phase flow through
a rigid circular pipe, by formulating the equations for
the two-phase motion taking the volume~fraction of the
dust particles into account. Nag and Jana (1981) exten-
ded the work of Nayfeh by considering an axial wave under
pulsative pressure and assuning the tube to be elastic.
Using Nayfeh's model, recently Datta and Nag (1981) stu-
died the flow of a dusty fluid in a rectanguler channel
tnder an‘imﬁdiéivebpefiodic pressure gradient, while
Gupta (1981) analysed the flow of a dusty fluid through
a channel oflvarious ¢ross-sections when the axial pres-

sure gradient is an arbitrary function of time. But on
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the whole not much work scems to have been done in the
area of dusty fluid flows taking the volume-fraction of

dust particles into consideration.

While all the studies on dusty fluid flows enu-
nerated so far are based‘on a linear dusty gas nodel,
Drew (1976) developed & non-linear wodel with a non-
linear lift force and the usual lincar Stokes' drag force
acting on the dust particles. He showed that the state
of unifora fluidization, which is to inpart the character
of fluid-like motion to a bed of solid particles, is un-
stable for small disturbances due to the 1lift forces on
the particle-phase beconing dominant during the initial

‘growth of the small disturbances.

Much earlier, Murray (1965) developed a matheunati-
cal model to describe the phenocikenon of fluidization on a
continuun basis. He showed that the system is unstable‘
to small internal disturbances and that surface waves can
be propagated (with attenuation) in a coumposite fluid.
These results are in agreenent with experiment. Further
hot beds,'where strongly exotheriic reactions uay be tak-
ing‘placp, centrifugal beds (beds fluidized within a ro-
tating systeh), and electromagnetic beds (those in which
fhe particulate phase is electrically conducting) are all

shown to be unstable to swall internal disturhances.
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Drew (1976) constructed a simple continuum linear
nodel for gas-particulate flows and showed that the vor-
ticity of the particle motion enclosed by a particle stream-
line is equal to the fluid vorticity enclosed by that
streauline. Purther the net flux of fluid vorticity through
a particle streauline is shown to be equal to zero. The
pressure drop &along a fluid streauline is related'to the net
drag force along that streanline. Eaploying Drew's nodel,
Kaimal (1978, 1979) studied the peristaltic motion of a
suspension of rigid particles in a tube of arbitrary wave
shape and also the steady flow of a dilute suspension in a
slowly varying axisynmetric tube at low Reynolds nuaber.
Copalan (1983) presented an exact similar solution for the
unsteady flow of a dilute suspension in a semi-infinite
contracting or expanding circular pipe. ©Saroj Prabha and
Jain (1983) investigated gas-particulate flow with incomp-
ressible gas phase and coupressible particle phaée through
a tube of varying cross-section and developed series solu-
tion for small Reynolds number. It is found that the par-
ticulate density increases in the radial direction and be-

coiles large at the tube wall.

Very recently Elghobashi and Abou-Arab (1983) deve-
loped a two-equation turbulence wmodel for pfedicting two-

phase flows. The two equations describe the conservation
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of turbulence, kinetic energy and dissipation rate of that
energy for the carrier fluid in & two-phase flow. This
new model estinmates the need to sinulate in an ad hoc
manner the effects of the dispersed phase on turbulence
structure. Preliminary testing has indicated that this
model is successful in predicting the main features of a

round gaseous jet laden with uniforu-size solid particles.

1.3 Models for Dusty Gases

Q?everal mathenatical wmodels for dusty gases have
been proposed and used in the literature following diffe-
rent approaches. These uodels differ widely in various
details. Most of the dusty gas nodels are linear umodels
in that the force of mechanical interaction between the
dispersive phase and the continuous phase is assumed to

be proportional to their relative velocity.>

Murray (1954) derived the basic equations for two-
phase flow with finite volume-fraction of solid particles
using the continuum theory. Marble (1963) made an atteumpt
to improve the model of Murray by applying the umodern tech-
niques of fluid dynamics. He introduced the temperature
and diameter of solid particles in the distribution fune-
tion and framed the fundamental equations. Marble (1964)

also developed a dusty gas uodel fof particle collision
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process in one-dimensional flow of a gas, containing
solid particles of two diffefent sizes, in which the
effect of particle collisions is accounted for as well
as the interaction between the particles and the gas.

Soo (1967) formulated a nodel with solid particles of
each size as a species in the nixture. Using sinple
kinetic theory Pai (1973) derived the fundamental equa-
tions from Boltzmann's equations for the nixture of a
gas and a pseudo-fluid of swall spherical solid.parti-'
cles. Drew (1976) developed a non-linear wodel in which
the mechanical interaction between the two phéses is a
non-linear 1ift force along with the usual linear Stokes'
drag force. The 1ift force is proportional ‘to the velo-
city of the particle relative to the fluid and to one-
half ﬁower of the shear rate which is a generalization of
a result due to Saffuman (1965) on the 1lift force expe-
rienced by a small sphere in an unbounded shear flow of a
highly viscous fluid. TFor this purpose he eumployed the
general‘constitutive principles of equipresence, inva-
riance of coordinate transforuwations, objectivity, etec.
as given by Truesdell and Noll (1965) and the constitu-
tive principles enunciated by Drew and Segel (1971)
applicable to two-phase continuumn. Peddieson (1976)

.employed a non-linear model based on ad-hoc assumptions
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to study the unsteady parallel flows of particulate sus-

pensions under two-phase and multi-phase systens.

(?he work presented in this thesis ig based on three
9 A} Gg; ; cd0s ONLDL " *

linear mode%s for two-phase flows and a-detailed presenta~
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tion of these models is. given -below.

(1 .3.1 Saffnan's Model

The sinplest and perhaps the nost commonly used
linear nodel for dusty gases is the one formulated by
Saffman (1962). In constructing the model Saffman (1962)
supposed the dust particles to be uniform in size and
shape. He further assumed that the bulk concentration
(i.e. concentration by volume) of the dust, say @, is
very swnall and can be neglected, while the uass concentra-
tion of dust, say A , 1s a significant fraction of
unity. By Stokes' drag law the net effect of the dust on
the gas is equivalent to an extra frictional force
KN(¥ - u) per unit voluuae, where ulx, t), v(x, t) are
the velocities of the fluid and dust respectively,

N = N(x, t) is thé nuober density of the dust particles
and X 'is the Stokes' drag coefficient (K = 6 mu a for
spherical particles of radius a, WK Ybeing the viscosity
-of the fluid).L}Assuming that the Reynolds nunber of the

relative wotion of the fluid and dust is soall compared
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with unity so that the force between the fluid and dust
is proportional to their relative velocity and that the
fluid is incompressible,(?he equations of conservation

of momentun and of wmass for the fluid phase are

d u
P at+(u..<7)a] - &p + u02E+KN(;—E) (1.1)

v.-uu =0 ' (1.2)

where p 1is the pressure and P is the density of the

fluid.

To formulate the equations of nmotion for the parti-
culate phase Saffmen made soue further simpiifying assupr
tions regarding the motion of dust particles in the fluid.
The minimum size of the solid particles is assumed to be
large enough to contain millions of molecules so that
there is no individual molecular notion within a dust
particle. 1In the absence of such molecular wotions the
discrete phase does ﬁot contribute any pressure gradient
forces in the field equations. Besides, the nuaber den-
sity of the discrete phase is assumed to be sufficiently
snall as to neglect the effects of the Brownian uotion.
The force exerted on the dust by the fluid is equal and
opposite to that exerted on the fluid by the dust.

Further, the dust particles, due to its inertia, do not
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necessarily follow the streamlines of the fluid. Hence

the material rates of change bear the distinction that

D o) d
—_—= +oug (1.3)
Dt 01 Oxi

for the fluid, while

D o} o)
— + V‘i (1 -4)
Dt dt QX

D i
for the dust particles, where t. is the time variable

and Xy is the space coordinate.

Hence the equations of conservation of nouentun

and of mass for the dust phase are

d
0| et . 5. V)T |= e KNG - ) (1.5)
3t
b -—
— (@) + ¥ . (@v) =0 (1.6)
dt

where m is the mass of a dust particle and g 1is the
acceleration due to gravity, the force of buoyancy
(weight of liquid displaced by dust particles per unit

volune, viz. - @Pg) being neglected since ¢ is small.
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Further the weight of a dust particle acting ver-
tically down is assumed to be much smaller than the drag
force and hence neglected. This amounts to assuning that
the suspended dust particles are not heavy enough to settle
under the influence of gravity and hence the sedimentation

effects are ignored. Thus equation (1.5) reduces to

—t

Dv K _  _
~—=-=(v-u) (1.7)
Dtp ) :

If the nunber density N of dust particles is
assumed to be a constant throughout the motion, equation

(1.6) reduces to
9.7 = 0 (1.8)

Because of the inertia of solid particles, a gas-
solid suspension denonstrates an interesting nature of
relaxation. This is a familiar concept in the phenonenon
of radicactivity which is the spontaneous deconposition
or disintegration of & nucleus into lighter fraguents.
Experinental evidence has shown that the radioactive

decay follows the exponential law:

N(t) = N, e vt (1.9)

or equivalently the differential equation
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dN

E: =-YN (1.10)
where N is the nuaber of undecayed atoas still present
at time t and N 1is the initial number at time +t = O,
Y being a constant known as the disintegration constant.
The relaxation time T is defined as the time taken by
N(t) to attain 1/e of its value at time + and it is
found to be 1/v . The equation of wotion for dust viz.
(1.7) resenbles equation (1.10) which characterizes radio-
active decay. Hence the relaxation time T in this case
is the time taken by the velocity of dust relative to the

fluid to become 1/e¢ of its value at time t and

T = a/K.

Thus the effect of dust is characterized by the

two parameters:

i) the mass concentration X = nN/$ which is
the ratio of the density of the dispersive
phase to that of the fluid phase and is a

dimensionless quantity and

ii) the relaxation time T = u/K which is a
meagure of time taken by the dust parti-~
cles to adjust to changes in the gas velo-

city and has the dimensions of time.
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The former parameter describes how much dust is present
and the latter parameter is determined by the size of

the individual particles.

Equations (1.1) and (1.7) can be rewritten in

terms of dust parameters as

du _ _ 1 . o — N
—"+(u.V)u="_ Vp+))‘7 u+~—-(v—u) (1.11)
ot » _ T

EX I
T + (v . O)v =u-V (1.12)

ot

where 5) = p /¥ is the kinematic viscosity of the
fluid.

3“ o o\ The fluid satisfies the usual no-slip condition at
the boundaries, while the dust particles may slip on the
boundaries. However both the fluid and dust particles

Y
[

’)

The field equations (1.11) and (1.12) together -

are subject to initial condition. Nows /oex k3~

with the continuity equations (1.2) and (1.8) form the
back-bone of the work presented in the subsequent

" chapters II - V.
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1.3.2 Neyfeh's Model

Saffman's model for dusty gases assumes that the
bulk concentration of dust particles is small enough to
be neglected. On the other hand the density of the mate-
rial of dust is assumed to be fairly large compared to
gas density so that the mass concentration of dust is an
appreciable fraction of unity. This assumption is often
justified, but at high fluid densities or at high par-
ticle mass-fraction, the volume-fraction of dust particles
may become sjgnificantly large in which case it cannot be
neglected) Rudinger (1965) has shown that in a flow ana-
lysis of é;s-particle mixtures the errors involved by
neglecting the volume-fraction of dust particles vary from
insignificant to large. (?ence Nayfeh (1966) has construc-
ted a linear model for two-phase flow taking the voluume-

fraction of dust particles into account.

If @ denotes the volume occupied by the dust
particles per unit volume of the mixture, and assuming
the fluid flow relative to the particles to be a Stokes
flow, the equations of conservation of momentum for the
fluid and dust particles as formulated by Nayfeh (1966)

are

- .

ou _ _ 5 —
+ (@ .VXuf=1-@|-vup+ vV
t

FO1 - @)

+ KNGV - w) (1.13)
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d v
dt

iy + F V)T |=0|-op - uw T |+ KNE - T)

Tomtn -t

.o . (1.14)

where the symbols used have the same meanings as those
given in equations (1.1) and (1.5). The equations of con-
tinuity for the two phases are given by (1.2) and (1.8)
assuming incémpressibility of fluid and constant number

density of dust particles.

In this model the presence of dust particles is
characterized by the three parameters:
i) the mass concentration ) mN/ P,

ii) the volume-fraction ¢ = mN/iZ‘-'1 ( 91 being
the density of the material comprising the

dust particles) and

jii) the relaxation time T = n/xK.

Using these parameters equations (1.13) and (1.14) take

. the form:
d U 1 A L
+(E.V)u=--——vp+\)'§72_+ (v - u)
d t o TO - @)
(1.15)

3V | e 1 o
’t‘[ V+ ~ . V)v]=—(-;vp+pv2u) +u-v.
- A (1.16)
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When the volume~fraction ¢ is neglected i.e.
putting @ = 0 in (1.15) and (1.16), equations (1.11)

“and (1.12) of Saffman's model are recovered.

As in Saffman's model, the fluid particles are
restricted by the usual no-slip boundary condition and
initial condition, while dust particles satisfy only ini-

tial condition.

- Equations (1.15) and (1.16) form the basic equa-

tions for the problem discussed in Chapter VI.

1.3.3  Drew's Model

Several macroscopic or continuum models have been
proposed and used in the literature. All such models seem
to differ in various details. Drew (1975) has constructed
a simple continuum linear model for two-phase flow by con-
sidering the particulate phase as a continuum and using a
drag force which 1s linear in the velocity difference. He
has included the effect of the fluid pressure on the par-
ticles in the manner shown by Drew and Segel (1971), for
in some situations the pressure force on the particles has
been shown to be important (Drew (1974)). Further, the
volume~-fraction of the particles is assumed to be a cons-
tant. This assumption is exactly true in the limit of

low concentrations. Thus the two sets of Navier-Stokes
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“equations for the two phases as formlated by Drew (1975)

are
du _ _ 1 5 _ o ,

+ (u. Vua=-— UP + ,\)V u+ M'(v - u) 1.17)
2t p
dv _ _ 1 o — _

+ v.¥)Ww=-— VP +D Vv + Mu-v) (1.18)
d ¢ pp P .

In these equations u , v are the fluid and dust
velocities, P 1is the pressure in the fluid, Pp is the
partial pressure due to the particulate phase, ¢ = F(1- @)
and P = Ep ¢ are the densities of the fluid and dust
phases respectively with ¢ and F‘p as the material
densities and ¢ is the volume-fraction of the particu-
late phase, Y is the kinematic viscosity of the fluid, .
D is the diffusivity constant for the particulate phase,
M=1/7"% where 7T 1is the rela'xétion tive of the dust

particles and M' = pp M/ P.

Assuming the fluid as incompressible and the number
density of dust particles to be a constant throughout the
motion, the equations of conservation of mass for the

fluid and dust continuuns are given by (1.2) and (1.8).
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In this wodel the fluid and dust phases each sa-
tisfy the no-slip boundary condition and initial condi-
tion. Equations (1.17) ané (1.18) foru the basis for the

work presented in Chapter VII.

The field equations for the fluid and dust phases
in the three models mentioned above are coupled Navier-
Stokes equations. Since the Navier-Stokes equations are
non-linear exact solutions are not possible in general,
even in the classical single phase motion, except in a
very few Specigl cases. Thus, even though Saffman's
model is relatively simple, exact solutions can be found
only in a very limited number of cases. In order to
solve problems of two-phasc flows, it often becomes neces=—
sary to wcke certain assumptions such as teking the number
density of dust particles to be constant and the wass con-
centrafion of dust to be small and/or uniform in space/

time.

1.4 Present Investigations

The next nine chapters deal with some theoretical
investigations on fluid flows with and without particulate
suspensions. They are presented in two parts. Part I
consists of six chapters relating to incompressible, vis-

cous, dusty fluid flows. Chapters II to V employ Saffuan's
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model, chapter VI uses Nayfeh's -mnodel and chapter VII is
based on Drew's model. Part II consists of three chapters
dealing with incoupressible, viscous fluid flows without

dust particles embedded in them.

Chapter II comprises the study of two probleums
dealing with the quasi-steady flow of an incompressible,
viscous, dusty fluid between two parallel plates oscillat-
ing in their own planes with same frequency, but with dif-
ference in phase ana amplitude. In the first probleun, an.
oscillatory body force is applied parallel to the plates,
having the same frequency as that of the plates, but with
a phase different fron that of either of the two plates.
The amplitude of the body force is assumed to be an arbit-
rary function of the space coordinate. Soue interesting
cases of the body force are discussed. In the second
problem, the body force is replaced by a uniforu transverse
magnetic field and the induced field is neglected. Bxact
solutions for the velocities of fluid and dust particles
are obtained, and the influence of dust parameters, geo-
met;ic parameters and the magnetic field on the flow
characteristics are investigated. It is found that the

flow is retarded by the presence of dust particles.

Chapter III investigates the unsteady, adjacent,

laninar flow of two immiscible, incompressible, viscous,
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dusty fluids between two parallel plates driven by a
constant pressure gradient by employing explicit finite
difference)technique. It is fouﬁd that the velocities
of dust particles are much less than that of dusty fluids.
Purther this probl?m is reconsidered using the Crank-
Nicolson»implicit finitec difference scheme for the case
when the two immiscible fluids are dust-free and the
solutions thus obtained are compared with those got by the

explicit method.

Chapter IV deals with two problems relating to the
flow of a dusty, viscous fluid between two infinite, co-
axial, circular cylinders one of which is kept stationary
and the other is impulsively brought to rest from a state
of uniform motion. In the first problem, the axially
moving cylinder is impulsively stopped, while in the
second problem, the uniformly rotating cyiinder is brought
to a sudden rest. Exact solutions are obtained by using
the techniques of Iaplace transforu and the finite Hankel
transforn. The variation of flow rate, skin-friction and
torque on the cylinders are discussed for a spectrum of
values of dust parameters. Two interesting limiting

cases are deduced.

In chapter V, a study is made of the quasi-steady

azimaithal flow of a dusty fluid between two coaxial
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cylinders in oscillatory rotation, having the samc fre-
quency of oscillation but with different phase and ampli-
tude. Fluctuating flows inside and outside a cylinder in
oscillatory rotation are deduced as limiting cases. For
small frequencieg of excitation, the velocities of fluid
and dust particles are equrl. For large frequencies; the

dust particles are stationary and the fluid flow has a

boundary layer character.

Chapter VI analyses the generacl, unsteady, laminar
flow of a dusty fluid between two parallel plates t?king
the volume-fractidn of the dust particles into account.
The flow is produced by the boundaries, with the lower
plate moving parallel to itself with a time-dependent
velocity, while the motion of the upper plate in its own
plane is such that a linear combination of its velocity
and shear stress is an arbitrary function of time, Using
Laplace transform technique exact solutions are obtained
for the fluid and dust velocities. Two interesting
classes of physical problems are deduced. It is observed
that the volume~fraction parameter has an increasing
effect on velocity distributions and other principal flow

characters.

In chapter VII, the unsteady flow of a dilute sus-

. pension between two contracting/distending, rectangular/
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circular plates is investigated, cuploying Drew's continuunm
nodel. Using similarity soluticn technique the two sets of
Navier-Stokes equctions for the two phases are reduced to
two fourth order, non-lincar, coupled, ordinary differen-
tial equations which are solved numerically. The effects
of the Schmidt nunber and the Reynolds number on the flow

characteristics are exaunincd.

Chapter VIII is devoted to the study of the flow of
two immiscible, incompressible, viscous fluids occupying
the semi-infinite region over an infinite flat plate set
into motion in its plane with velocity uOtn iig (w t).
Using laplace transforu, exact solutions are obtained for
the particular cases when the plate perforus simple har-
monic oscillations and when the plate is impulsively star-
ted froum rest with constant velocity and constant accelera-
tion. In each case the wall shear stress is coumputed for a

range of values of density end viscosity ratios of the two

fluids.

In chapter IX, 2n analysis is presented of thc un-
steady flow of an incompressible, viscous fluic between
two parallel, infinitely long rectsngular plates and cir-
cular plates, wheh the lower plate is fixed and the upper

plate moves towards the lower plafe. Full Wavier-Stokes
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equations are used to obtain the pressure distribution

as a function of the film thickness and the velocity of
the upper plate. The sinkage relation between film thick-
ness and time is determined for a given load on the upper
plate. The departure from the classical inertialess solu-
tion is exhibited for various values of two dimensionless
parameters involved, one characterizing the load and the

other gravity.

The final chapter X reconsiders the problem of
chapter IX when the lower plate is a stretching sheet.
Eliminating pressure from the Navier-Stokes equations a
fourth order, non-linear, ordinary differential equation
is obtained and this is solved numerically. Velocity dis-
tributions and pressure variation #cross the plates are

deteruined.





