STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2004–05 & thereafter) **SUBJECT CODE: CH/MC/PC54** ## B.Sc. DEGREE EXAMINATION, NOVEMBER 2007 BRANCH IV- CHEMISTRY FIFTH SEMESTER | | | | REG.NO | | | | | | |--|---|---|---|---------------|--|--|--|--| | PAPER | | E : MAJOR CORE
: PHYSICAL CHEM
: 30 MINUTES | IISTRY-II | MAX.MARKS: 30 | | | | | | An | swer | ANSWER ON all the questions. | SECTION – A
THE QUESTION PAPEI | | | | | | | I. | F | ill in the blanks : | | | | | | | | | 1. A crystal system which does not possess element of symmetry is | | | | | | | | | | 2. | NaCl has FCC structure. The number of Na ⁺ and Cl ⁻ ions in the unit cell is and respectively. | | | | | | | | | 3. | | | | | | | | | | 4. | | | | | | | | | | 5. | The cryoscopic constant of a solvent can be evaluated by measuring depression freezing point of solution having concentration | | | | | | | | | 6. | | | | | | | | | | 7. | | | | | | | | | | 8. The temperature at which the partially miscible liquid pair becomes miscib proportions is known as | | | | | | | | | | 9. | Solubility of a gas at constant pressure with rise i temperature. | | | | | | | | 10. The condensed phase rule is given as | | | | | | | | | | II | N | Natch the following: | | | | | | | | | 11. | Vant' Hoff factor | a) Easy melting | | | | | | | | 12. | Enantiotropy | b) Lever rule | | | | | | | | 13. | Eutectic | c) Degree of associa | ation | | | | | | | 14. | Fractional distillation | d) Polymorphism | | | | | | | | 15. | Distribution law | e) Critical solution tf) Partition coefficient | | | | | | /2/ ## CH/MC/PC54 ## **III** Choose the correct answer: | | 16. | .The freezing pint
a) 273 K | g pint of 0.01 molal aqueous solution of NaCl will be
b) below 273 K c) 274K | | | | d) 276 K | | |---|---|--|---|-----|--------|--------|------------|--| | | 17. | The number of components and number of degrees of freedom of solution of NaCl is a) C=3; F=3 b) C=2; F=1 c) C=2; F=3 d) | | | | | - | | | | 18. | The crystal plane for which the interplanar spacing $d_{hkl} = a/\sqrt{2}$ is | | | | | | | | | | a) 110 | b) | 111 | c) 221 | d) 222 | | | | | The triple point is the point where a) three components are in equilibrium b) the number of degrees of freedom is 3. c) two components are in equilibrium. d) the number of degrees of freedom is zero. | | | | | | | | | | 20. | Isotonic solutions have a) the same freezing point b) the same boiling point c) the same surface tension d) the same osmotic pressure | | | | | | | | IV Substantiate the following: 4x2 ^t | | | | | | | 4x2½=10 | | | | 21. | Osmotic pressure of 0.1 Molal. NaCl solution and that of Urea are not the same | | | | | | | | | 22. | | | | | | | | | | 23. | | | | | | | | | | 24. It is possible to recover only 95.6% of ethanol from ethanol-water system distillation. | | | | | | em through | | ### STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2004 –05 & thereafter) SUBJECT CODE: CH/MC/PC54 #### **B.Sc. DEGREE EXAMINATION, NOVEMBER 2007 BRANCH IV- CHEMISTRY** FIFTH SEMESTER COURSE : MAJOR CORE **PAPER** : PHYSICAL CHEMISTRY-II TIME : 2 ½ HOURS MAX.MARKS: 70 > SECTION - B (5x6=30) #### Answer any five questions: What are liquid crystals? How are they classified? Mention their applications. 1. - 2. a) Draw the planes in a cube corresponding to the following Miller indices. (3) (i) 222 (ii) 110 - b) Calculate the angle at which diffraction will occur is an X-ray spectrometer, when X-rays of wavelength 1.55A° is used. Given that the interplanar distance is 4.05A°. (3) - Determine the number of components, phases and degrees of freedom for the 3. following system. - a) $H_2O(s) \rightleftharpoons H_2O(l) \rightleftharpoons H_2O(g)$. b) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ - c) $Na_2SO_4.10H_2O \rightleftharpoons Na_2SO_4(s) + 10H_2O(g)$ - d) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ - e) $N_2O_4(g)$ $\geq 2NO_2(g)$ - f) $NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$ when $pNH_3 = pHCl$. - 4. Draw schematically the phase diagram for water and apply Gibb's phase rule to it. - 5. State the distribution law. Under what conditions is the law valid? How is the law derived from thermodymic consideration? - 6. Write short notes on (i) Efflorescence (ii) deliquescence with suitable examples. - 7. Acetic acid associates in benzene to form double molecules, 1.70 g of acetic acid when dissolved in 100g of benzene raised the boiling point by 0.41°C. calculate the Vant'Hoff factor ($k_b=2.57 \text{ k kg mol}^{-1}$). /2/ CH/MC/PC54 #### **SECTION - C** (2x20=40) #### Answer any two questions: - 8. a) Describe the theory of neutron diffraction? How is it different from X-ray diffraction? Mention few applications of it. - b) Draw a neat sketch illustrating various axes of symmetry and planes of symmetry in a cube and work out the symmetry operations for each. - 9. Draw and discuss the phase diagrams for the following systems bringing out their significance. - (i) Lead-silver system. - (ii) Ferric chloride-water system. - 10. a) Obtain the expression for depression in freezing point based on thermodynamic considerations. - b) Explain the terms osmosis and osmotic pressure. Derive Van't Hoff equation for the osmotic pressure of a dilute solution. How is the equation utilized for determining molar mass of a solute? - 4. a) Discuss the solubility of binary systems of partially miscible liquids with a special reference to phenol-water system. - b) Write short notes on - (i) Fractional distillation (ii) Steam distillation