STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2011-02 \& thereafter)

SUBJECT CODE : 11MT/RC/AA105

M.Phil. DEGREE EXAMINATION, JANUARY 2014
 MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ CORE	
PAPER	: ALGEBRA AND ANALYSIS	
TIME	$: 3$ HOURS	MAX. MARKS : 100

Answer any five questions. Each question carries 20 marks:

1. (a) Prove that a bijective map of a lattice L into a lattice L^{\prime} is a lattice isomorphism if and only if its inverse are order preserving.
(b) State and prove the fundamental theorem of projective geometry. (5+15)
2. (a) Define a Noetherian and an Artinian module and give an example of each.
(b) If R is a Noetherian ring, prove that the polynomial ring $R[x]$ is also a Noetherian ring. $\quad(6+14)$
3. (a) Let R be a ring, and $M_{n}(R)$ be the ring of n x n matrices with entries in R. prove that categories mod- R and mod- $M_{n}(R)$ of right modules over R and $M_{n}(R)$ respectively are equivalent.
(b) Define tensor product of a right R - module M and a left $\mathrm{R}-$ module N and prove that it exists.
(c) Prove the following: (i). $Q \otimes_{Z} Z_{8}=0$. (ii). $Z_{6} \otimes_{Z} Z_{7}=0 . \quad(8+8+4)$
4. (a) State and prove Jordan - Holder- Dedekind theorem on lattices.
(b) State and prove Riesz Representation theorem.
5. (a) State and prove the Lebesgue's monotone convergence theorem.
(b) State and prove the Lebesgue's dominated convergence theorem. $(10+10)$
6. (a) State and prove Holder's inequality and Minkowski's inequality.
(b) Prove that $L_{p}(\mu)$ is a complete metric space, for $1 \leq p \leq \infty$ for every positive measure μ.
7. State and prove Plancheral's theorem.
8. (a) For an R-module M, prove that the following conditions are equivalent.
(i) M is Noetherian
(ii) Every submodule of M is finitely generated.
(iii) Every non-empty set S of submodules of M has a maximal element.
(b) If R is Noetherian ring, prove that each ideal contains of R contains a finite product of prime ideals of R.
(14 +6)
