STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted during the academic year 2011-02 \& thereafter)
SUBJECT CODE : 11MT/RC/AA105

M.Phil. DEGREE EXAMINATION, JANUARY 2013
 MATHEMATICS
 FIRST SEMESTER

COURSE	$:$ CORE
PAPER	$:$ ALGEBRA AND ANALYSIS
TIME	$: 3$ HOURS

TIME : 3 HOURS

MAX. MARKS : 100

Answer any five questions. Each question carries $\mathbf{2 0}$ marks:

1. (a) Prove that the lattice of normal subgroups of a group G is modular.
(b) Prove that a lattice is modular if and only if whenever $a \geq b$ and $a \wedge c=b \wedge c$ and $a \vee c=b \vee c$ for some c in L, then $a=b$.
(c) Define a Boolean algebra and prove that the complement of any element of a Boolean algebra is unique.
2. (a) If a module M contains a submodule N such that N and M / N are Artinian, then prove that M is Artinian.
(b) Let R be a left Artinian ring with unity and no non-zero nilpotent ideals. Then prove that R is isomorphic to a finite direct sum of matrix rings over division rings.
3. (a) Define tensor product of modules and prove that it exists and unique.
(b) Prove the following:
(i) $Q \otimes_{Z} Z_{8}=0$
(ii) $Z_{6} \otimes_{Z} Z_{7}=0$
(iii) $Q \otimes_{Z} Z=Q$ as additive groups.
4. State and prove the fundamental theorem of projective geometry.
5. (a) State and prove Lebesgue monotone convergence theorem.
(b) State and prove Fatou's Lemma.
6. (a) Prove that $L^{p}(\mu)$ is a complete metric space, for $1 \leq p \leq \infty$ and for every positive measure μ.
(b) If $f \in L^{1}$, prove that $\hat{f} \in C_{0}$ and $\|\hat{f}\|_{\infty} \leq\|f\|_{1}$.
7. State and prove Plancherel theorem.
8. (a) Define a uniform module and give an example.
(b) Prove that the ring $R=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a \in Z, \quad b, c \in Q\right\}$ is not left Noetherian but it is right Noetherian.
(c) Is Z considered as a module over itself an Artinian (Noetherian) module? Justify your answer.
(4+10+6)
