STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-2012 and thereafter) SUBJECT CODE : 11PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2013 BRANCH III - PHYSICS THIRD SEMESTER BEG. No.

			REG. No			
COURSE PAPER TIME	: MA	AJOR - CORE ATHEMATICAL MINUTES SECT	PHYSICS FION – A	ICS MAX. MARKS : 30		
	TO BE AN	NSWERED IN TH		TION PAPER ITS	SELF	
ANSWER A	ALL QUEST	IONS:			(30x1=30)	
Choose the	correct answ	er:				
1. $a \times a$ a) b		b) <i>b.a</i>		c) – $b \times a$	d) <i>a. b</i>	
2. Two a) 0	vectors are co	ollinear if and only b) 1	if $a \times b$	= c) -1	d) ∞	
		the das irrotational if b) $\nabla . F$		c) $\nabla \times F = 1$	d) $\nabla \times F = 0$	
		equation b) Poisson	on c)	Laplace	d) Hamiltonian	
		l vector then = b) grad A		curl A		
6. Curl a) ∇.	$\begin{array}{l} \operatorname{Curl} A = \dots \\ A \end{array}$	b) ∇² <i>A</i>	c)	$-\nabla A$	d) $-\nabla^2 A$	
		ation of $\vartheta = \nabla \psi$, y b) vector poten		velocity potential	d) wave potential	
		cuit current equation b) $i = \frac{E}{R} \left(1 - e^{\frac{2}{R}} \right)$		$i = \frac{E}{R} \left(1 + e^{\frac{-Rt}{L}} \right)$	d) $i = \frac{E}{R} e^{\frac{Rt}{L}}$	
9. The f a) -		ferential equation for $b -\lambda N$	or radio act c)	ci c	d) <i>λN</i>	
a) n	$-p(x)\frac{dy}{dx}+\varphi$ on linear inhomogenear inhomogenear inhomogenear	•	b)	ential equation of non linear homog linear homogeneo	eneous	
11. The 1 a) ±		quation $\frac{d^2x}{dt^2} + k^2x =$ b) $\pm ix$	= 0 are c) $\pm ik$	d) ±	k	

121 12. is an example for second order differential equation a) *RL* circuit b) *RC* circuit c) *RLC* damped d) LC circuit 13. $\Gamma_{\underline{1}} = \dots$ a) $-\sqrt{\pi}$ b) $-2\sqrt{\pi}$ c) $\sqrt{\pi}$ d) $2\sqrt{\pi}$ 14. $P_0(x) = \dots$ a) 1 b) -1 c) 0 d) ∞ 15. The recurrence formula $x P'_n(x) = P'_{n-1}(x) = \dots$ a) $P_n(x)$ b) $P'_n(x)$ c) $nP_n(x)$ d) $xP_n(x)$ Fill in the blanks; 16. *a*. *a* = _____. 17. *div* (*curl v*) = _____. 18. The equation of a SHM is $\frac{d^2y}{dx^2} + w^2x =$ _____. 19. $\beta\left(\frac{1}{2}, \frac{1}{2}\right) =$ ______. 20. The first order differential equation for velocity v is ______.

State whether the following statements are true or false:

21.
$$\int A \cdot ds = \iiint Curl A dv$$

22. $\sin \theta = \frac{a.b}{|ab|}$

23. The first order differential equation for voltage drop across inductance L is $L \frac{dI}{dt}$

24.
$$\Gamma_0 = \Gamma_{-n} = \infty$$

25. Dead beat motion of a spring is also called oscillatory.

Answer briefly:

26. S.T. $\Gamma_1 = 1$.

27. If r = ix + iy + iz, is the position vector then what is $\frac{dr}{dt}$?

28. If ∇ is vector operator how is it defined?

29. Find the current if a capacitor is changed from $2\mu c$ to $6\mu c$ in 10m seconds?

30. S.T. acceleration $a = v \frac{dv}{dx}$

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-2012 and thereafter) SUBJECT CODE : 11PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2013 BRANCH III - PHYSICS THIRD SEMESTER

COURSE	:	MAJOR - CORE
PAPER	:	MATHEMATICAL PHYSICS
TIME	:	2 ¹ / ₂ HOURS

MAX. MARKS: 70

SECTION – B

Answer any Five Questions:

5x5=25

3x15=45

- 1. Find the value of a if $A = a\hat{i} + \hat{j} + \sqrt{5}\hat{k}$ subtends an angle of 60° with $4\hat{i} 5\hat{j} + \sqrt{5}\hat{k}$.
- 2. Derive an expression for Gauss's law in differential form.
- 3. Derive Bernoulli's first order differential equation.
- 4. An inductance of 2*H* and a resistance of 20 ohm are connected in series with a cell of emf 100V. Find the current at the end of 0.01 sec.
- 5. A spring of stiffness k = 700 N/M is fixed at one end and other end has a load of 7 kg. It is pulled by 0.05 m and released. Find the period of oscillation.
- 6. S.T. $\Gamma_{\frac{1}{2}} = \sqrt{\pi}$.
- 7. S.T. $(x^2 1) P'_n(x) = n[xP_n P_{n-1}].$

SECTION – C

Answer any Three Questions:

- 8. P.T. $(y^2 z^2 + 3yz 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.
 - 9. State and prove Stoke's theorem.
 - 10. Derive expression for population growth over the years using first order differential equation.
 - 11. Get the characteristic 2^{nd} order differential equation and give its solution.
 - 12. Deduce Rodrigue's formula for Legendre polynomial and hence show that

$$\int_{-1}^{+1} P_n(x) dx = 0 \text{ when } n \neq 0 \text{ and } \int_{-1}^{+1} P_n(x) dx = 2 \text{ when } n = 0.$$
