STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2011-2012 and thereafter)
SUBJECT CODE : 11PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2013
 BRANCH III - PHYSICS
 THIRD SEMESTER

REG. No.

COURSE	$:$	MAJOR - CORE
PAPER	$:$	MATHEMATICAL PHYSICS
TIME	$:$	30 MINUTES

MAX. MARKS : 30
SECTION - A
TO BE ANSWERED IN THE QUESTION PAPER ITSELF
ANSWER ALL QUESTIONS:
Choose the correct answer:

1. $a \times b=$
a) $b \times a$
b) b. a
c) $-b \times a$
d) $a . b$
2. Two vectors are collinear if and only if $a \times b=$
a) 0
b) 1
c) -1
d) ∞
3. The field F is termed as irrotational if
a) $\nabla . F=0$
b) $\nabla . F=1$
c) $\nabla \times F=1$
d) $\nabla \times F=0$
4. $\nabla^{2} \varphi=0$ is called \qquad equation
a) Newton
b) Poisson
c) Laplace
d) Hamiltonian
5. If A is a solenoidal vector then \qquad $=0$
a) $\operatorname{div} A$
b) $\operatorname{grad} A$
c) $\operatorname{curl} A$
6. Curl Curl $A=$ \qquad
a) $\nabla \mathrm{A}$
b) $\nabla^{2} A$
c) $-\nabla A$
d) $-\nabla^{2} A$
7. In Bernoulli's equation of $\vartheta=\nabla \psi, \psi$ is called
a) scalar potential
b) vector potential
c) velocity potential
d) wave potential
8. In an $R L$ series circuit current equation is
a) $i=\frac{E}{R} e^{\frac{-R t}{L}}$
b) $i=\frac{E}{R}\left(1-e^{\frac{-R t}{L}}\right)$
c) $i=\frac{E}{R}\left(1+e^{\frac{-R t}{L}}\right)$
d) $i=\frac{E}{R} e^{\frac{R t}{L}}$
9. The first order differential equation for radio active decay $\frac{d N}{d t}=$
a) $-N$
b) $-\lambda N$
c) N
d) λN
10. $\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+\varphi(x) y=0$ is called ----- differential equation of second order.
a) non linear inhomogeneous
b) non linear homogeneous
c) linear inhomogeneous
d) linear homogeneous
11. The roots of the equation $\frac{d^{2} x}{d t^{2}}+k^{2} x=0$ are
a) $\pm x$
b) $\pm i x$
c) $\pm i k$
d) $\pm k$
12. is an example for second order differential equation
a) $R L$ circuit
b) $R C$ circuit
c) $R L C$ damped
d) $L C$ circuit
13. $\Gamma_{-\frac{1}{2}}=$
a) $-\sqrt{\pi}$
b) $-2 \sqrt{\pi}$
c) $\sqrt{\pi}$
d) $2 \sqrt{\pi}$
14. $P_{0}(x)=$ \qquad
a) 1
b) -1
c) 0
d) ∞
15. The recurrence formula $x P_{n}^{\prime}(x)=P_{n-1}^{\prime}(x)=\ldots \ldots$
a) $P_{n}(x)$
b) $P_{n}^{\prime}(x)$
c) $n P_{n}(x)$
d) $x P_{n}(x)$

Fill in the blanks;

16. $a \cdot a=$ \qquad .
17. $\operatorname{div}(\operatorname{curlv})=$ \qquad .
18. The equation of a SHM is $\frac{d^{2} y}{d x^{2}}+w^{2} x=$ \qquad .
19. $\beta\left(\frac{1}{2}, \frac{1}{2}\right)=$ \qquad
20. The first order differential equation for velocity v is \qquad .

State whether the following statements are true or false:

21. $\int A \cdot d s=\iiint \operatorname{Curl} A d v$
22. $\sin \theta=\frac{a . b}{|a b|}$
23. The first order differential equation for voltage drop across inductance L is $L \frac{d I}{d t}$.
24. $\Gamma_{0}=\Gamma_{-n}=\infty$
25. Dead beat motion of a spring is also called oscillatory.

Answer briefly:

26. S.T. $\Gamma_{1}=1$.
27. If $r=i x+i y+i z$, is the position vector then what is $\frac{d r}{d t}$?
28. If ∇ is vector operator how is it defined?
29. Find the current if a capacitor is changed from $2 \mu c$ to $6 \mu c$ in 10 m seconds?
30. S.T. acceleration $a=v \frac{d v}{d x}$.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2011-2012 and thereafter)
SUBJECT CODE : 11PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2013
 BRANCH III - PHYSICS
 THIRD SEMESTER

COURSE	$:$	MAJOR - CORE
PAPER	$:$	MATHEMATICAL PHYSICS
TIME	$:$	$21 / 2$ HOURS

SECTION - B
Answer any Five Questions:

1. Find the value of a if $A=a \hat{\imath}+\hat{\jmath}+\sqrt{5} \hat{k}$ subtends an angle of 60° with $4 \hat{\imath}-5 \hat{\jmath}+\sqrt{5} \hat{k}$.
2. Derive an expression for Gauss's law in differential form.
3. Derive Bernoulli's first order differential equation.
4. An inductance of 2 H and a resistance of 20 ohm are connected in series with a cell of emf 100 V . Find the current at the end of 0.01 sec.
5. A spring of stiffness $k=700 N / M$ is fixed at one end and other end has a load of 7 kg . It is pulled by 0.05 m and released. Find the period of oscillation.
6. S.T. $\Gamma_{\frac{1}{2}}=\sqrt{\pi}$.
7. S.T. $\left(x^{2}-1\right) P_{n}^{\prime}(x)=n\left[x P_{n}-P_{n-1}\right]$.

SECTION - C
Answer any Three Questions: 3x15=45
8. P.T. $\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-2 x z+2 z) \hat{k}$ is both solenoidal and irrotational.
9. State and prove Stoke's theorem.
10. Derive expression for population growth over the years using first order differential equation.
11. Get the characteristic $2^{\text {nd }}$ order differential equation and give its solution.
12. Deduce Rodrigue's formula for Legendre polynomial and hence show that

$$
\int_{-1}^{+1} P_{n}(x) d x=0 \text { when } n \neq 0 \text { and } \int_{-1}^{+1} P_{n}(x) d x=2 \text { when } n=0 .
$$

