B. Sc. DEGREE EXAMINATION, NOVEMBER 2013
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE	$:$ MAJOR - ELECTIVE
PAPER	$:$ NUMERICAL ANALYSIS
TIME	$: 3$ HOURS

MAX. MARKS : 100

SECTION - A ANSWER ALL THE QUESTIONS

(10X2=20)

1. State the criterion for the convergence of Newton-Raphson method.
2. Explain Gauss-Elimination method for solving a system of equations.
3. Find the sixth term of the sequence $8,12,19,29,42, \ldots .$.
4. Prove that $E=(1-\nabla)^{-1}$.
5. Form the divided difference table for

X	1	3	6	11
$\mathrm{~F}(\mathrm{x})$	4	32	224	1344

6. State Gause forward central difference formula.
7. State the general quadrature formula.
8. State the trapezoidal rule.
9. State Picard's formula.
10. State Runge-Kutta formula for the second order.

SECTION - B
 ANSWER ANY FIVE QUESTIONS

$(5 \times 8=40)$
11. Evaluate $\sqrt{12}$ to four decimal places by Newton-Raphson method.
12. Solve by Gauss Elimination method.
$3 x+4 y+5 z=18,2 x-y+8 z=13,5 x-2 y+7 z=20$
13. Using Lagrange’s interpolation formula find $Y(10)$ from the following table.

x	5	6	9	11
y	12	13	14	16

14. Apply Newton's backward formula to fit a polynomial of degree 3.

x	3	4	5	6
y	6	24	60	120

15. The population of a certain town is shown in the following table.

Year	1971	1981	1991	2001	2011
Population in thousands	40.6	60.8	79.9	103.6	132.7

16. Find the value of $\log 2^{1 / 3}$ from $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} d x$ using Simpson's $1 / 3$ rule with $h=0.25$.
17. Using Taylor's series method, find correct to four decimal places, the value of $y(0.1)$ given $\frac{d y}{d x}=x^{2}+y^{2}$ where $y(0)=1$.

> SECTION - C
$(2 X 20=40)$

ANSWER ANY TWO QUESTIONS

18. a) Find a real root of the equation $x^{3}-2 x-5=0$, using bisection method.
b) Find the missing values in the following data.

x	0	5	10	15	20	25
y	6	10	-	17	-	31

19. a) Using Stirling's formula find $y(1.22)$

x	1.0	1.1	1.2	1.3	1.4	1.5
y	0.84147	0.89121	0.93204	0.96356	0.98545	0.99749

b) Using Euler's method solve $y^{\prime}=x+y, y(0)=1, x=0.0$ to $x=1.0$ with $h=0.2$ check your result with the exact solution.
20. a) By applying the fourth order Runge-Kutta method find $y(0,2)$ from

$$
y^{\prime}=y-x, y(0)=2 \text { taking } h=0.1
$$

b) When a train is moving at 30 metres per second steam is shut off and brakes are applied. The speed of the train v in metres per second after ' t ' seconds is given by

t	0	5	10	15	20	25	30	35	40
v	30	24	19.5	16	13.6	11.7	10.0	8.5	7.0

Using Simpson's rule determine the distance moved by the train in 40 secs.

acacala

