SUBJECT CODE : PH/MC/QR64

\section*{B.Sc. DEGREE EXAMINATION APRIL 2011
 BRANCH III - PHYSICS
 SIXTH SEMESTER
 REG. No.
 | COURSE | $:$ | MAJOR - CORE |
| :--- | :--- | :--- |
| PAPER | $:$ | QUANTUM MECHANICS AND RELATIVITY |
| TIME | $:$ | 30 MINS. |
| MAX. MARKS $: 30$ | | |}

SECTION - A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF ANSWER ALL QUESTIONS:

(30 x $1=30$)
I CHOOSE THE CORRECT ANSWER:

1. Variation of mass with velocity
a) $M=\frac{M_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
b) $M_{1}=\sqrt{1-\frac{v_{1}{ }^{2}}{c^{2}}}$
c) $M_{2}=\sqrt{1-\frac{v_{2}{ }^{2}}{c^{2}}}$
2. Einstein's mass energy equivalence
a) $F=m a$
b) $E=m_{0} c^{2}$
c) $E=m c^{2}$
3. A normalized wave function
a) $\int \psi \psi^{*} d V=0$
b) $\int \psi d V=0$
c) $\int \psi^{*} A(\psi) d V$
4. Relation between group velocity $\left(V_{g}\right)$ and phase velocity or wave velocity $\left(V_{p}\right)$ is
a) $V_{p}=\frac{w}{k}$
b) $V_{g}=\frac{d w}{k}$
c) $V_{g}=V_{p}-\lambda \frac{d V p}{d \lambda}$
5. The Quantum mechanical operator for the total energy is $H=i h \frac{\partial}{\partial t}$ is
a) time independent
b) time dependent
c) linear operator
6. De-Broglie wave length for accelerated electron is \qquad
a) $1 / 2 m_{o} v^{2}$
b) $\lambda=\frac{h}{\sqrt{2 m_{o} v^{2}}}$
c) $\lambda=e v$
7. The uncertainty principle is \qquad
a) $\Delta x \cdot \Delta p \geq \frac{h}{4 \pi}$
b) $\frac{\Delta x}{\Delta t}=h$
c) $\frac{d \lambda}{d p}=h$
8. Schrodinger's equation in terms of the Hamilton operator is \qquad
a) $E=K+V$
b) $\frac{h^{2}}{2 m} \nabla^{2}$
c) $H \psi=E \psi$
9. The frequency of oscillation of the harmonic oscillator is given by
a) $V=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
b) $1 / 2 m w^{2}$
c) $1 / 2 m w x^{2}$
10. The coordinate system chosen to describe motion is known as \qquad
a) special theory of relativity
b) Frame of reference
c) Galilean transformation
11. Unaccelerated reference frames in uniform motion of translation, relative to one another are called \qquad .
a) non-inertial frames
b) inertial frames
c) Newtonian relativity
12. Relationship between the total energy, rest energy and the momentum is
a) $E^{2}=m_{o}{ }^{2} c^{4}+p^{2} c^{2}$
b) $E=m c^{2}$
c) $m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
13. According to Bohr's theory the stable state of electrons in the atom are governed by
a) de-Broglic wave length
b) integer rules
c) Group velocity
14. The steady state form of Schrodinger's equation in three dimension is \qquad .
a) $\frac{i h}{2 \pi} \frac{\partial \psi}{\partial t}$
b) $\nabla^{2} \psi+\frac{8 h^{2} m}{h^{2}}(E-V) \psi=0$
c) $\frac{-i h}{2 \pi} r \times \psi$
15. Angular momentum Quantum operator is \qquad
a) $i \frac{h}{2 \pi} \nabla$
b) $i\left(\frac{h}{2 \pi}\right) \frac{\partial}{\partial t}$
c) $-i \frac{h}{2 \pi} r \times \nabla$

II. FILL IN THE BLANKS:

16. Accelerated frames are called \qquad .
17. The time interval measured by a clock at rest relative to the observer is called
18. Each wave function ψ_{n} consist of a polynomial $H_{n}(Y)$ called a \qquad .
19. A particle moving without any force acting on it is called \qquad .
20. The minimum value of the energy of the Harmonic oscillator corresponding to $n=0$ is \qquad .

III. STATE WHETHER TRUE OR FALSE:

21. The velocity of light in free space is constant.
22. Each dynamical variable relating to the motion of a particle can be represented by a linear operator.
23. Angular momentum Quantum operator is $p^{2}\left(2 m+E_{p}(r)\right)$.
24. Schrodinger's time independent wave equation is $\nabla^{2} \psi+\frac{8 \pi^{2} m}{h^{2}}(E-V) \psi=0$.
25. Every physical observable is associated with a linear Hamilton operator.

IV. ANSWER THE FOLLOWING:

26. Postulates of special theory of relativity:-
27. Postulates of wave mechanics:-
28. What is meant by matter waves?
29. Explain Heisenberg's uncertainty principle.
30. Explain Max Born's interpretation of the wave function.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
 (For candidates admitted during the academic year 2008-09)

SUBJECT CODE : PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2011
 BRANCH III - PHYSICS
 SIXTH SEMESTER

COURSE	$:$	MAJOR - CORE
PAPER	$:$	QUANTUM MECHANICS AND RELATIVITY
TIME	$:$	$2^{11 / 2}$ HOURS
MAX. MARKS : 70		

SECTION - B
ANSWER ANY FIVE QUESTIONS:

1. The equivalent wave length of a moving electron is $0.24 \times 10^{-10} \mathrm{~m}$ what voltage applied between two grids will bring it to rest.
2. Calculate the $K E$ in $e V$ of (i) an electron (ii) a neutron having a de-Broglie wave length of $I^{\circ} A$. What will be the corresponding wave of x-ray of wave length $I^{\circ} A$?
3. An atomic particle has a rest mass of $2.5 \times 10^{-25} \mathrm{~kg}$ find its total mass energy when (a) at rest and (b) when it has a velocity of 0.9 the speed of light.
4. Calculate the rest energy of an electron in joules and in electron volts.
5. How fast would a rocket have to go relative to an observer for its length to be contracted to 99% of its length at rest?
6. Derive Hermitian operator?
7. What is the wave length that is associated with an electron?

SECTION - C

ANSWER ANY THREE QUESTIONS: (3 x $15=45$)
8. Describe the Michelson-Morley experiment and explain the physical significance of negative results.
9. What is the meaning of mass-energy equivalence? Obtain Einstein's mass energy relation, show that $1 \mathrm{amu}=931 \mathrm{Mev}$.
10. Discuss briefly the wave nature of matter and obtain an expression of de-Broglie wavelength for matter waves.
11. Calculate the values of the energy of a particle in a one dimensional box. Indicate graphically the first three wave functions four such a particle.
12. Establish Schrodinger's equation for a linear harmonic oscillator and solve it to obtain its eigen values and eigen functions.

